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In this paper, we are concerned with the linear stability of zero pressure-gradient 
laminar boundary-layer flow over compliant walls which are composed of one or 
more layers of isotropic viscoelastic materials and backed by a rigid base. Wall 
compliance supports a whole host of new instabilities in addition to the 
Tollmien-Schlichting mode of instability, which originally exists even when the wall 
is rigid. The perturbations in the flow and the compliant wall are coupled at  their 
common interface through the kinematic condition of velocity continuity and the 
dynamical condition of stress continuity. The disturbance modes in the flow are 
governed by the Orr-Sommerfeld equation using the locally-parallel flow assumption, 
and the response of the compliant layers is described using a displacement-stress 
formalism. The theoretical treatment provides a unified formulation of the stability 
eigenvalue problem that is applicable to compliant walls having any finite number 
of uniform layers ; inclusive of viscous sublayer. The formulation is well suited to 
systematic numerical implementation. Results for single- and multi-layer walls are 
presented. Analyses of the eigenfunctions give an insight into some of the physics 
involved. Multi-layering gives a measure of control over the stability characteristics 
of compliant walls not available to single-layer walls. The present study provides 
evidence which suggests that substantial suppression of disturbance growth may be 
possible for suitably tailored compliant walls. 

1. Introduction 
Laminar boundary-layer flows over compliant surfaces are susceptible to a wide 

variety of instabilities. This proliferation was first recognized by Benjamin (1960) in 
a marvellous piece of analysis. Benjamin’s study was motivated by the reported 
experimental findings of Kramer (1957, 1960) that dramatic drag reduction for 
towed underwater streamlined bodies could be achieved by coating the bodies with 
a viscously-damped compliant coating. A comprehensive review of past and current 
literature can be found in Carpenter & Garrad (1985) or Yeo (1986). 

In  the broadest sense, the instabilities that arise from the interaction between the 
compliant surface and the flow may be classified into two categories. The first of 
these is the Tollmien-Schlichting instability (TSI) which originally exists even when 
the wall is rigid. The second category consists of those which are brought into being 
by the compliant response of the wall. We refer to this latter category as compliance- 
induced flow instabilities (CIFI). The CIFI are none other than those termed FISI 
(flow-induced surface instabilities) by Carpenter et al. We have chosen a slightly 
diffcrcnt terminology to emphasize the interest in flow stability and the passive 
nature of the compliant walls. The Tollmien-Schlichting instability is a viscosity- 
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induced instability and could not exist if the flow were inviscid. Among the 
compliance-induced instabilities, three main types may be identified. The first two of 
these are related to the free-surface wave and static deformation modes of the 
compliant wall; see Yeo & Dowling (1987). They correspond respectively to the 
flutter and divergence instabilities in the field of aeroelasticity and have frequently 
been termed as such. The third type of instability is akin to the Kelvin-Helmholtz 
instability and occurs when the wall or the surface is so soft that there is no real phase 
speed c a t  which i t  can resist the pressure fluctuations of the flow. 

In his 1960 work, Benjamin showed that the TSI is stabilized by wall compliance 
but destabilized by wall damping. The latter contradicted Kramer’s notion of 
stabilization by ‘distributed damping ’. The flutter modes have just the opposite 
characteristics. Benjamin’s analysis was extended by Landahl (1962) to a workable 
numerical scheme for the determination of the eigenvalues based upon the matching 
of the admittances of the flow and the wall. Besides providing some quantitative 
confirmation of the results of Benjamin (1960), which were founded on qualitative 
analyses, Landahl offered an interesting physical explanation for the destabilizing 
influence of wall dissipation on the TSI. For these instabilities, Landahl observed 
that the total disturbance energy of the coupled system actually decreases with 
increase in the disturbance amplitude, and consequently, any non-conservative flow 
of energy from the system must be accompanied by disturbance growth. This energy 
argument was subsequently generalized by Benjamin (1963) into a three-fold 
classification scheme for the instabilities. In  this scheme, the instability wave is 
characterized by the sign of the energy needed to activate or excite the disturbance. 
The Class A waves, of which the TSI is an important example, are characterized by 
negative activation energy. Disturbance energy must be extracted from the system 
to create the waves and for the waves to grow. The Class B instability waves, of 
which the flutter instability is an example, are those which require positive 
activation energy. For the Class C instability, of which the well-known Kelvin- 
Helmholtz instability is a prime candidate, the activation energy is zero or 
nearly so. The major inferences of the early theoretical studies, rooted largely to a 
temporal interpretation of stability (real wavenumber a and complex frequency w ) ,  
are that for successful stabilization, a compliant wall should have high flexibility and 
low damping to inhibit the Class A TSI waves. However, the damping must be large 
enough to suppress the Class B waves, and the compliance must not be so large that 
the Class C Kelvin-Helmholtz type instability can occur. Between these opposing 
requirements, effective stabilization of the boundary layer appears difficult to  
achieve. 

In addition to being classified by their origin (TSI or CIFI) or according to 
Benjamin’s energy scheme, the instability waves may be further characterized as 
convective or absolute following the work of Bers & Briggs (1964) in plasma physics. 
Bearing in mind that in practice, a disturbance is constituted from the superposition 
of numerous, possibly innumerable, normal wave modes, the unstable development 
of the disturbance is said to be convective when none of the unstable constituent 
modes possess zero group velocity. For such instability, the disturbance amplitude 
a t  any fixed point in the flow remains small although the disturbance packet may 
grow as it propagates. There is, however, absolute instability when there exist 
unstable mode/s having zero group velocity. When this happens constructive 
interference among modes neighbouring those with zero group velocity occurs 
leading to the exponential temporal growth of the disturbance a t  some point in the 
flow. 
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The convective nature of boundary-layer flow over a rigid flat plate was 
emphasized and demonstrated theoretically by Gaster (1965). Such instabilities are 
somewhat physically better modelled by the use of spatial normal modes (real 
frequency o and complex wavenumber a ) ;  see Drazin & Reid (1981). The use of 
spatial modes for modelling convective instability was advocated by Gaster (1965) 
and was also implied by the theoretical treatment of Bers & Briggs (1964). Instability 
modes in boundary-layer flow over compliant walls/surfaces are believed to be 
predominantly convective although the possible occurrence of true absolute 
instability cannot be excluded in very soft walls ; the classical Kelvin-Helmholtz 
instability is an absolute instability. An example of possible Class A absolute 
instability was suggested by Carpenter & Garrad (1986) for potential flow over a 
damped spring-backed bending plate. Absolute instability is a devastating form of 
instability and very little is known a t  this time concerning its possible existence in 
boundary-layer flow over compliant walls. However, even in the very soft walls for 
which its existence is a possibility, it is more than likely that strong convective-type 
instabilities will precede the onset of any absolute instability. The establishment of 
the existence or otherwise of absolute instability in boundary-layer flow over 
compliant walls is a difficult problem (see Yeo 1986) and will not be addressed in this 
paper. 

In the absence of absolute instability, a temporal interpretation of boundary-layer 
instability (such as those of the early studies) appears to be overly severe. Given a 
generally convective nature of boundary-layer instability, reduction in drag via 
stabilization probably arises as a result of reduced downstream disturbance growth 
which in turn leads to a delay in the onset of strong nonlinear processes preceding a 
breakdown to turbulence. The downstream growth of disturbances in boundary- 
layer flow over compliant membrane was briefly investigated by Landahl & Kaplan 
(1965). The downstream growth rates were estimated from temporal eigenvalue data 
using Gaster’s relation (Gaster 1962) ai x -wi/cg, where cg = aw,/aa is the real group 
velocity and the subscripts i and r denote respectively the imaginary and real parts 
of the quantity. Reduced growth was reported for TSI over corresponding rigid wall 
results. The effect of reduced spatial growth on transition for flows over compliant 
membrane surfaces was investigated by Gyorgyfalvy (1967) using the well- 
established eN ( N  M 9) transition correlation rule of Smith & Gamberoni (1956). This 
is a purely empirical rule according to which disturbance introduced at an upstream 
location triggers transition to turbulence when its amplitude grows by a factor of 
eN in accordance with the linear stability theory. Gyorgyfalvy’s results indicated 
that spring-backed compliant membranes of suitable properties possess significant 
potential for delaying transition. It is pertinent to note t,hat Gyorgyfalvy used the 
real phase speed c, in place of the real group velocity to obtain the downstream 
spatial growth rates. Similarly favourable conclusions were tentatively reached by 
Carpenter & Garrad (1985) for certain of Kramer’s walls, modelled as a bending plate 
backed by elastic foundation and viscous substrate, using a value of N = 9.5. 
Carpenter & Garrad also pointed out errors in the Compliant membrane results of 
Landahl & Kaplan (1965). 

By far the majority of drag reduction experiments to verify Kramer’s discovery 
were conducted in turbulent flows. This preoccupation with turbulent-flow drag 
reduction could in part be a consequence of the relatively unfavourable assessment 
of the prospect for stabilization by the early works (such as those of Benjamin 
1960, 1963 and Landahl 1962 already referred to), coupled with the particular 
circumstances of Kramer’s experiment (conducted in Long Beach Harbor, 
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California). Experimental studies of drag reduction for laminar boundary layer and 
of the more fundamental aspects of stabilization connected with disturbance 
amplification are few. Aspects of such experimental works and even an account of the 
Russian works in the field, carried out by Babenko and co-workers, are described in 
Carpenter & Garrad (1985). Careful experiments to investigate the hydrodynamic 
stability of zero pressure-gradient flat-plate boundary-layer flow over compliant 
surfaces were recently initiated by Gaster a t  NMI Ltd. The experiments were 
performed in a large towing tank using speeds of up to 3 m/s. Preliminary findings, 
reported in Gaster (1984, 1985), indicated that the TSI waves do in fact suffer greatly 
reduced growth rate compared with similar waves in flow over a rigid plate; 
confirming the basic finding of Benjamin and others that  wall compliance stabilizes 
the TS waves. A fuller account is now available in Gaster (1987). 

In  the present paper, we are concerned with the linear hydrodynamic stability of 
the Blasius boundary-layer flow over compliant walls which are composed of one or 
more uniformly thick layers of homogeneous, isotropic viscoelastic materials. These 
are normally backed by a rigid base as shown in figure 1. The bonding between the 
layers is assumed to be perfect so that there is no relative displacement between 
adjacent layers a t  their common interface. This is a more realistic model for 
compliant walls because such walls are more easily manufactured in practice than the 
idealized spring-backed membrane or plate surfaces investigated by many earlier 
studies. 

The hydrodynamic stability of boundary-layer flow over non-dissipative layers 
was first studied qualitatively by Nonweiler (1963). Numerical solutions of the 
temporal stability eigenvalue problem were obtained by Kaplan (1964) and by 
Landahl & Kaplan (1965) for Voigt-type viscoelastic single layers subject to sliding 
type boundary condition a t  the interface between the layer and the rigid base. Some 
results for single- and two-layer walls were presented by Fraser & Carpenter (1985) ; 
these results appear to pertain only to elastic materials. Other recent works on flow 
stability of interest include those of Willis (1987) and Yeo (1986). Willis carried out 
stability calculations for some layered walls which corroborated very well with the 
amplification data obtained from Gaster’s experiments. These results provide 
vindication for the use of the linear stability theory, a theory well tested for the rigid- 
wall case, in predicting the stabilization potential of compliant walls. The other 
major part of Willis (1987) concerns Carpenter-type Kramer surfaces. Compliant 
walls constituted of single or multiple layers of isotropic materials were studied in 
fairly extensive details by Yeo (1986). The influence of fibre-type material anisotropy 
on flow stability as well as the stability of the flow to three-dimensional wave modes 
was also investigated. The present paper reports on those parts of the work of Yeo 
(1986) which are devoted to the two-dimensional stability of boundary-layer flow 
over isotropic-material walls. 

Section 2 below sets out the basic theory underlying the stability eigenvalue 
problem. The propagation of disturbance waves in the wall is described using a 
displacement-stress formalism which utilizes the wave-propagation solution of a 
single layer to represent the solution for any finite number of layers. Coupling 
between the flow and the wall perturbations is provided by the continuity of velocity 
and stress at the flow-wall interface. A preliminary version of the theory together 
with some viscoelastic single-layer and two-layer (the second layer being a solid layer 
or a viscous fluid substrate) wall results were presented by the author a t  the 
Euromech Colloquium 188 held a t  Leeds, UK in August 1984. Miscellaneous aspects 
of solutions, including a brief description of the major points of numerical 
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implementation are covered in $2.6. In  $3, results generated are compared against 
some of those available in the literature. 

Results for single- and multi-layer walls are presented in $84 and 5 respectively. 
The material densities arc assumed to be equal to that of the flow, which may be 
assumed to be water. The need to investigate and understand the stability behaviour 
of multi-layer walls is very clear considering that the original Kramer walls, the 
genesis of the present subject, are in fact rather complicated multi-layer walls. 
Indeed, some of the compliant walls employed by Gaster in his recent experimental 
studies, already alluded to, are two-layer walls; consisting of a thin layer of a stiff 
material attached onto a much thicker and softer second layer. The addition of the 
stiff top-layer was found to have a beneficial effect on stability (Gaster, personal 
communication). I n  a less relevant case, Chung & Merrill (1984) reported that the 
attachment of a thin overlaying Teflon sheet onto soft viscoelastic layers suppressed 
surface deformation and produced some modest reduction in drag under turbulent 
flow conditions in a rotating disk apparatus. Multi-layer walls consisting of two to 
four compliant layers are investigated here. The four-layer walls studied bear a 
certain geometric similarity to the original Kramer walls. In  addition to marginal 

FIGURE 1. Boundary-layer flow over a multi-layer compliant wall. 
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FIGURE 2. Flow-wall interface. x = (xl, 0,O) ; x(') = (xl, 0, q3), coordinate of interface 
x ( ~ )  = (xi"', 0, 0), material coordinate of x@), 

stability curves, the maximum spatial growth envelopes are also computed in a 
number of cases to assess the potential of selected walls for influencing transition. 
Wall eigenfunctions are also presented for a number of walls. These will be found to 
be invaluable in helping to explain various features of st'ability behaviour. Finally, 
in $6, flow eigenfunctions are discussed. 

In this paper the consideration is restricted to two-dimensional disturbances 
propagating in the (xl, x3)-plane (see figure 2 ) .  While it is true that three-dimensional 
disturbance modes may be more dominant than two-dimensional ones in laminar 
boundary-layer flows over compliant walls as the study of Yeo (1986) shows, two- 
dimensional studies remain important and necessary on a t  least two counts. First, 
because of its much lower computational cost, the study of two-dimensional 
disturbance modes provides a useful preliminary assessment of the stability 
characteristics and this can be employed to identify suitable compliant walls that  
deserve more careful three-dimensional scrutiny. Furthermore, if the purpose is to 
eliminate or suppress the CIFI, then two-dimensional study will generally be 
adequate. 

2. Theory 
This section sets out the basic theory and notations. Important aspects of the 

numerical solution are very briefly outlined. Further details concerning both theory 
and numerical implementation are described in Yeo (1986). 

2.1. Flow stabi l i ty  equation 

The basic flow of interest here is the zero pressure-gradient boundary-layer flow over 
a flat surface. An important and often used approximation for this flow is given by 
the Blasius solution of Prandtl's boundary-layer equations. This is summarized 
below. In dimensionless form, the basic velocity profile is 

U(X3) 'f'(%), (2.1) 

where f(x,) is the Blasius stream function which satisfies the ordinary differential 
equation 

2f"+m2ff" = 0, ( 2 . 2 )  

subject to the boundary conditionsf(0) = f ' ( O )  = 0 andf'(co) = 1 .  The prime denotes 
ordinary derivative with respect to xg. The similarity reduction of Prandtl's 
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boundary-layer equations to the form given by (2.1) and (2.2) is obtained via the non- 
dimensionalization of velocities with respect to the free-stream velocity U g )  and 
lengths with respect to = m(dd)xid)Ug))$.  Here dd) is the kinematic viscosity and 
xy), the distance from the leading edge. Superscript (d) is used to indicate that the 
quantity is dimensional. We take to be the local dimensional displacement 
thickness, in which case m z 1.72078. 

In  considering the linear stability of the Blasius boundary layer, it is further 
customary to disregard the non-parallel flow terms because these are asymptotically 
small a t  large values of the streamwise Reynolds number R, ( = U(md)x(P)/dd)). This 
renders the flow locally-parallel and considerably simplifies the stability analysis. If 
EU = (eu1, 0, euJT is a two-dimensional perturbation of the locally-parallel basic flow 
field U(x,) i l  and E @  the corresponding perturbation streamfunction ( E  is a small 
real quantity) so that u1 = @, and u3 = - @, 1 ,  then in the normal mode analysis, 
@ has a separable solution of the form q5(x3)eias1e-iwt where $(x3) satisfies the 
Orr-Sommerfeld equation 

1 
( U - c )  (qS'-azq5)-U"~ = -(qPV-2a2gI"+a4$). lUR8 (2.3) 

Here we note that w and a are respectively the non-dimensional radian frequency 
and the x,-wavenumber of the perturbation; c ( = w / a )  is the phase velocity. 
R8 ( = U z ) 8 ( d ) / ~ ( d ) )  is the Reynolds number based on the local displacement 
thickness lengthscale We also note that the reference scale for stress is pjd) ( U g ) ) z  
where pid) is the dimensional density of the flow. 

2.2. Wave propagation in isotropic wall layers 

The propagation of sinusoidal waves in a homogeneous isotropic viscoelastic body 
with zero body forces is governed by the following dimensionless viscoelastic 
analogue of Navier's equation 

where q = (y1,y2,y3)T is the displacement vector field (see Bland 1960). All the 
physical quantities in this section are assumed to be non-dimensionalized with 
respect to the following reference scales ; U$ for velocity, pid) for density and L$) for 
length. The purpose of using a wall lengthscale L f ) ,  which differs from that of the 
'local' flow, will become clear later on. Y, and Y, are respectively the deviatoric and 
dilatational complex moduli and are related to the more familiar moduli of bulk K 
and shear G (both complex equivalents) by 

Y, = 3K, Y, = 2G = 2 (pC,"-iwd). (2.5a, b )  

p is the non-dimensional density. In  the studies made, the materials were assumed 
to  be elastic-dilatational (K real) and Voigt-deviatoric ; which explains the form of G 
in (2.5b) where C, and d are respectively the elastic shear speed and the damping 
coefficient of the material. 

The displacement vector field 11 may be expressed as the sum of a curl-free field and 
a divergence-free field via the Stokes-Helmholtz decomposition as 

'I = v p  + v x i p ,  (2.6) 
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where q5(l) and ~ ( l )  = (@iZ)', @iz), @iL))T are the Lame's potentials. Then q is a solution 
of (2 .4 )  if q5(l) and ~ ( l )  satisfy the following wave equations 

where 

( 2 . 7 ~ )  

(2.7 b )  

The displacement fields Vq5(l) and V x yd') correspond respectively to the propagation 
of dilatational (irrotational) and shear (equivoluminal) waves. cL and cT are hence 
commonly called the bulk wave speed and the shear wave speed respectively. 

From the constitutive relation rkl = Y, elcl + 5 ( Y, - Y,) a,, ejj for sinusoidal type 
processes in isotropic viscoelastic solids (where elCl = $(qk, + qz, ,) are the linear strain 
components), the stress components can be expressed in terms of the potentials q5(z) 
and ydl) using (2.6) to give 

where a,, is the Kronecker delta and ekmn the alternating symbol. The usual 
convention on repeated indices and subscript commas is assumed. 

The governing equations for the wall perturbations can be solved in closed form for 
the case of a single uniform layer. Since we are concerned here only with two- 
dimensional wave propagation, we look for plane strain (q2 = 0) harmonic travelling- 
wave solution of the form 

The substitution of these into the wave equations (2 .7)  yields two ordinary 
differential equations 

(2.10a, b )  Q'fO - b i  Q'(0 = 0 $1)  - ,3; $$O = 0, 33 2 2 ,33  

where 

These in turn have general solutions of the form 

J(z) = B1eb~z3+Bze-b~Z3, $il) = B 3 ebTZ3+B4e-bTz3. (2.1la, b )  

The Bi (i = 1 , .  . . ,4) are complex constants in a homogeneous layer and are 
determined when theAboundarg conditions of the layer are specified. With the 
solutions (2.11) for q5(') and $it), we can determine the %,-dependent complex 
amplitudes G l ,  G3, &31 and c?33 in terms of the four constants B, to B, using (2.6) and 
(2.8), and form the vector S(x3)  = ($,, $3, c?31, c?33)T which is referred to herein as the 
displacement-stress (d.s.) vector. 

S ( X 3 )  = &@3)B, ( 2 . 1 2 4  
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where B = (B, ,  B,, B,, 13JT and 

Hl = iY,(a2+b$), H ,  = iab, Y,, H ,  = iub, Y,. 

The matrix 0 is generally non-singular for layers of finite thicknesses. The d s .  
vectors a t  two points in a layer, say x3 = z1 and z2,  can be related to each other by 
merely eliminating the 4-vector B to give 

(2.13) 

where P(z,, z l )  = Q ( z 2 )  0-1 (zl). 

arbitrary values of x, in the layer, say zl ,  z2 and z3 
The matrix P, called the propagation matrix, has the following properties : for 

P(z,, 21) = P - Y z 1 ,  z,), (2.14 a) 

and P ( Z 3 ,  21) = P ( Z , , Z 2 )  w,, 21). (2.14b) 

From (2.14a), P(z,, zl) is the identity matrix. When the matrix function P(z,. z , )  is 
known and the d.s. vector a t  one point z1 specified, the d.s. vector a t  any other point 
z2 in the layer is completely determined. From (2.14b) it can be shown that the linear 
relation between the d.s. vector a t  any two points in a given layer is independent of 
the origin of x, and is, in fact, dependent only on the distance between the two 
points; P(z,, zl) = P(0, z 1 - z 2 ) .  The usefulness of the propagation matrix lies in the 
treatment of multi-layer wall response. 

In a multi-layer wall such as that shown in figure 1,  a different propagation matrix 
can be defined for each layer, and thus for the j t h  layer, the displacement-stress 
vector a t  the top of the layer (x, = zj-l) and a t  the bottom of the layer (x, = z j )  are 
related by 

S(Zj) = P(i) (Zj, S(z3-J, (2.15) 

where PC5) is the propagation matrix for the j t h  layer. Since adjacent layers are 
assumed to be perfectly bonded together, the d.s. vector is continuous across t h e  
interfaces and a continuous d.s. vector can be defined over the entire compliant wall 
The d.s. vector at the flow-wall interface a t  x3 = zo = 0 can be related to that a t  thc 
bottom of the nth layer a t  x, = z, by multiplying the propagation matrices 
together in the proper sequence 

S ( z n )  = P(n) (zn ,  zn-1) S(zn-1) 

(2.16) 

where h(j) = zi-l -zi is the thickness of thejth layer. The bracketed superscript in this 
case denotes the layer number. When the nth layer is the last compliant layer and 
x, = zn is thus the interface with the rigid base, we call 

(2.17) 
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the overall propagation matrix of the compliant wall. The propagation matrix 
approach outlined above thus enables what happens a t  the top of the compliant wall 
to be propagated to the bottom of the last layer via the solution of a single layer. 
Historically, a method similar to the above was introduced by Thomson (1950) for 
the transmission of elastic waves through stratified solid medium. The present usage 
of the term propagation matrix follows that of Gilbert & Backus (1966). 

2.3.  The coupling of Jluid and wall motions 
Having established the necessary dynamics governing the perturbations in the flow 
and in the wall, i t  remains to relate these at the flow-wall interface, which has a mean 
and ‘undisturbed ’ position along x3 = x o .  As part of the linearity assumption, the 
disturbance wave amplitude elql at the interface is assumed to be much smaller than 
the wavelength so that the wave slope is also very small. The wall lengthscale Lc)  is 
also used throughout this section. 

Figure 2 shows a schematic view of the interface with greatly exaggerated wave 
amplitude. VT) = Ui, + cu is the perturbed two-dimensional local velocity profile. 
The superscript (T) denotes the ‘total’ of the entity; the sum of the mean and the 
perturbation. The superscript (L) denotes a material coordinate of the Lagrangian 
reference frame used for the description of wall motion. The coupling of the flow and 
the wall motions is provided by a kinematic and a dynamical interface conditions. 
These are 
(i) the continuity of velocity a t  the interface 

~ f i l , ( ~ )  = U(T)lx(i) (2.18) 

(dL) and x(’) are defined in figure 2) and 
(ii) the continuity of stress a t  the interface 

c@ Ip) nk = CT$” I,(i) n, , ( j  = 1 and 3), 
(wall) (flow) 

where n = (nl, n2, n3)T is the unit normal in the direction of the vector 

(2.19) 

The above coupling conditions hold a t  the interface whose detailed position is not 
generally known in advance. Taylor expansions, however, enable these conditions to 
be approximated a t  the mean position of the interface a t  x, = zo = 0 to the same 
order of truncation accuracy as is implicit in the linearization applied. Taylor 
expansion of (2.18) about x = (xl, 0,  zo)  yields 

(2.20) 

Since U(zo)  = 0, the x1 and x,-components of this equation are respectively 

ql = u1 + U’y, + O(€), (2.21 a)  

q 3  = U 3 + 0 ( 6 ) ,  (2.21 b )  

where all the terms are evaluated a t  x. To leading order, in terms of x,-dependent 
complex amplitudes, we have 

(2.22a, b )  
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The subscript zo denotes evaluation at  xB = z,,. Equation (2.19) may be recast as 

(@I + e o j k ) l x ( ~ )  YL, = (ajp) +evj,)lxo) nk ( j  = 1 and 3), (2 .23 )  

where the c($') are the mean or equilibrium stresses. Expansion about x then 
gives 

(flow) 

The first terms on the right- and left-hand sides of the equality cancel because they 
represent the initial equilibrium state. The second term on the left-hand may be 
taken to be zero because it represents the streamwise variation of the mean stresses. 
I ts  omission is fully consistent with the locally parallel flow assumption. To leading 
order, in terms of complex amplitudes, it can be shown that 

and 

(2.25 a )  

(2 .253)  

(wall) (flow) 

where R, = U Z ) L t ) / d d )  is the Reynolds number based on the wall reference 
lengthscale. The term U"lZ0 is zero for the Blasius velocity profile but need not be zero 
for the more general Falkner-Skan profiles. 

Using (2 .22 )  and (2 .25) ,  the d.s. vector for the wall a t  xB = zo can be defined in 
terms of the complex amplitude of the disturbance stream function $ and its 
derivatives a t  xB = zo.  W O )  = Q&O)eg'~ (2.26 a )  

where v ) ( ~ )  = ($, s', s", $"')T(w) and 

(2 .26b)  
0 1. iU'(cw)-' io-l 0 

0 0 
0 R,1 

Q, = [ '-' 
R,'(a2+ U"c-1) 

- U' - ( c  + 3iaR;') O - (iaRW)-' 

The superscript (w) is placed for the sole purpose of emphasizing that the Q, above is 
in the wall reference lengthscale of L:). We call 0,  the flow-wall coupling matrix. 

The coupling of tangential shear stress perturbation, included in the interface 
condition (2.19), was omitted in previous studies by Landahl & Kaplan (1965). 
Fraser (1984) and Fraser & Carpenter (1985). Instead these authors set &31120 to zero 
on the ground that it is much smaller than the normal stress component $33(z , This 
omission is justifiable a t  moderate to large Reynolds numbers. For long wavelength 
disturbances a t  low Reynolds numbers, $.311zo may be of similar order to & 3 3 1 z , .  Indeed 
long wavelength low Reynolds number instability was discovered by Craik (1966) for 
air flow over liquid layers. The retention of tangential shear stress coupling would 
enable such instabilities to be detected should they exist. Non-parallel flow effects 
will become important a t  low Reynolds numbers. However, it appears unlikely that 
they will nullify such instabilities should one really exist in the context of locally- 
parallel flow. 
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2.4. Non-dimensionalization scheme 

The reader will have noted that different reference lengthscales have been adopted 
for the flow disturbance equations and for the description of wall response and the 
flow-wall coupling conditions ; the other reference scales being identical. The local 
displacement thickness is a characteristic length of the boundary layer and the 
advantage of using i t  for flow calculation is that  the local basic velocity profile is then 
independent of the Reynolds number R,. However, if 8‘) is used as the reference 
lengthscale throughout the entire calculation, then, because the dimensional 
thicknesses and the other dimensional wall parameters are constant and varies 
streamwise with R,, i t  becomes necessary to scale all the dimensional wall parameters 
to a new local lengthscale each time R, changes. Such scalings must be done 
carefully and error has been known to occur. Instead of performing such rescaling of 
wall parameters a t  each R,, the approach used here is to  perform all the calculations 
pertaining to the wall, and indeed also the coupling conditions in a fixed wall 
lengthscale LF), which needs only be defined implicitly by the wall Reynolds number 
R, (= U ~ ) L ~ ’ / V ‘ ~ ) ) ,  already introduced in the previous section. The overall 
propagation matrix Po and the coupling matrix Q, have already been defined using 
the wall lengthscale Lg). To link these with the flow calculations which are carried 
out in the local lengthscale it is only necessary to relate the flow disturbance 
amplitude vector of (2.26a) to its counterpart p2, in the flow lengthscale of 

To do this, the lengthscale ratio r = R,/R, = S(d)/LE) is defined. Then 

q::) = M s Bz,, (2.27) 

where M, is the diagonal matrix Diag(r, l , ~ - - l , r - ~ } .  Using (2.16), (2.17), (2.26) and 
(2.27) the d.s. vector a t  the interface with the rigid base S(z, )  can be related to the 
flow disturbance amplitude v,, as follows 

S(,)(z,) = Po(w)QLw’M, qz,. (2.28) 

Since all the calculations relating to the response of the wall are performed in the wall 
reference scales, i t  is therefore appropriate to specify the wall’s material properties 
and dimensions in terms of the wall’s references, which to recap are L$), U z )  and pid). 
In contrast with the other mentioned studies, the present non-dimensionalization 
procedure substitutes successive scalings of wall parameters with respect to 
with the simple calculation of the scaling matrix M,. The procedure is both simple to  
implement and less prone to errors. With (2.28), the boundary conditions to the 
Orr-Sommerfeld equation may now be specified. 

2.5. Boundary  conditions for the Orr-Sommerfeld equation 

The Orr-Sommerfeld equation is a fourth-order ordinary differential equation and 
requires four boundary conditions for the problem to  be fully specified. Two 
boundary conditions a t  x3 = zo can be obtained from the first two rows of (2.28) if 
there is a specification of the displacement a t  the interface between the last layer and 
the rigid base. Since = 0 and G3Iz, = 0 when the last compliant layer is perfectly 
bonded onto the rigid base (this is so in almost all the cases examined) we have 

Q,qz, = 0 (null vector), (2.29) 

where 0, is the 2 x 4 matrix formed from the first two rows of the product matrix 
Po(w) Q f )  M,. 
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The other two boundary conditions are given by the requirement that the 
disturbance amplitude $(x3) must remain bounded as x3 + 00. As x3+ 03, U(x,)  tends 
to unity and the Orr-Sommerfeld equation reduces to 

(D2 - (2.30) 

where p = (a*+iaR,(l -c));, pr > 0 and a, > 0. Subscript r denotes the real part 
of the complex quantity. Admissible solutions of (2.30) which remain bounded at  
x, = co have the form 

$ = R, e-OrX3 + B, e-px3, (2.31) 

where R, and B, are complex constants. Assuming a sufficiently high degree of 
differentiability for $(x,), it  can be shown using (2.31) that the following relation 
holds for $ at  large values of x,: 

Q,V = 0, (2.32) 

where 
ap a+p 0 

ap a+p 1 
Q , = [  

The Orr-Sommerfeld equation and the four homogeneous boundary conditions 
given by (2.29) and (2.32) then constitute the necessary eigenvalue problem. This 
eigenvalue relation may be denoted symbolically as 

9 ( a ,  w ,  RB) = 0, (2.33) 

where the dependence on wall parameters is suppressed for notational brevity. When 
considering stability in the spatial sense, a disturbance wave of fixed real frequency 
w is said to be unstable when ai < 0 (subscript i denotes the imaginary part of the 
quantity). This corresponds physically to a downstream growing wave. The neutral 
states (both w and a are real) for both temporal and spatial considerations are, 
however, identical. 

At this juncture, it is appropriate to mention an extension to the theory of 52.2 for 
the case in which there is no rigid base, but instead, the nth or last layer is an infinite 
half-space extending to - co in the x,-direction. This half-space idealization is also 
useful for treating cases in which the rate of disturbance decay within certain layers 
is so rapid that i t  is not possible within the available floating-point accuracy to 
‘propagate ’ the disturbance across the layer. This happens, for example, when the 
thickness of the layer is fairly large compared with the propagating wavelength of 
the disturbance. If the nth layer is the half-space, solutions are admissible only when 
the d.s. vector S(x3)  remains bounded as x3 tends to - 00. From the theory in 52.2, 
we note that the constant 4-vector of the nth layer B(n) = p S ( z , )  where Po is now 
redefined to be 

Po = Q - ’ ( z ~ - , )  11 P(i’(0, h(j)) .  (2.34) 

The requirement that the disturbance amplitude remains bounded as x3 + - co 
implies that those components of B(n) which correspond to growing waves as x, + - 00 
must be set to zero. When (bL)r and (bT)r are greater than zero, the components are 
BP) and BP). The boundary condition matrix 0, in (2.29) must now be formed 
from the second and fourth rows of PO(w)Q~w)M, where Po is now given by (2.34). 

1 

i=n-1 
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2.6 .  Numerical and other aspects of solution 

An initial-value or ‘ shooting ’ approach was adopted to solve the eigenvalue problem 
represented symbolically by (2.33). The particular variant used to compute 9 
employs the compound matrix formulation of Ng & Reid (1979) for the 
Orr-Sommerfeld equation. The compound-matrix equivalent of the Orr-Sommerfeld 
equation does not suffer from the parasitic growth problem associated with the 
highly ‘stiff’ nature of the equation a t  large R,. I ts  integration can hence be 
performed using any standard integration routine for ordinary differential equations. 
In the present investigation, the integration of the compound-matrix equivalent was 
carried out using the Adam’s routine DOSQAF of the NAG Routine Library. This is 
a more sophisticated routine than the commonly used fixed step-size fourth-order 
Runge-Kutta routine. It employs a variable step-size and variable order strategy to 
calculate its results to within a specified bounding tolerance for local errors. A local 
error tolerance of lo-* with a mixed-error criterion was found to be completely 
adequate (see Routine’s documentation). Because of the variable step-size nature of 
the integration routine, the basic flow equation ( 2 . 2 )  was simultaneously integrated 
with the governing equation. This incurred additional, though generally small, 
computational cost. A better alternative, which avoids the numerous re-integration 
of the basic flow equation, would be to provide the required basic flow data by 
employing Chebyshev polynomial representations for the Blasius solution and its 
derivatives. This latter course was adopted for some of the three-dimensional 
stability studies reported in Yeo (1986). 

The infinity boundary conditions given by (2 .32)  were implemented a t  x3 = 6 
(displacement thicknesses). This is more than twice the boundary-layer thickness 
based on 0.99Um. The results obtained were practically identical to those obtained 
with xg = 8. The eigenvalues or the roots of the relation ( 2 . 3 3 )  are determined in an 
iterative manner using the root finder C05NBF of the KAG routine library. This is 
a general nonlinear equation solver which is based on a modified version of the 
Powell’s hybrid method. The level of convergence was fixed at lo-’ for aimost all the 
runs. This gives, when the initial guess values are scaled to unity, a uniform accuracy 
of 7 significant decimal digits in all the components of the roots (see Routine’s 
documentation). Further details of numerical implementation can be found in Yeo 
(1986) which also describes a global search scheme for unstable eigenstates. 

When an eigenvalue of the problem has been found, the corresponding disturbance 
eigenfunction of the flow may be calculated (see Davey 1981 or Yeo 1986). The 
displacement-stress vector at a point x3 = z in the ith layer is then given recursively 

S ( z )  = P ( 0 ,  2i-l - 2 )  S ( Z i - J ,  (2 .35a)  
by 

and S(z,) = Q ~ w ) M s ~ L O .  (2 .35b)  

From (2 .35 )  the distributions of the complex strain amplitudes iij can be computed 
from the distributions of ql and i,. For a neutral eigenstate, the average local rate 
of dissipation per unit volume within the compliant wall is 

B = (cTij)r (Sij), = d ( d W ) ) 2 X  ( L i j 1 2 ,  ( 2 .36 )  

where 6, = tii -& i k k  are just the complex amplitudes of the deviatoric strain 
components. The overbar denotes averaging over the phase of the wave. The second 
equality in ( 2 . 3 6 )  holds for the special case of elastic-dilatational and Voigt- 

i j  
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deviatoric materials (see equation (2.5a, b ) )  studied here. For a Voigt material, a 
measure of the ' quality ' of the damping is given by the loss tangent 

tan S = (w("'d)/(pC;),  (2.37) 

where 6 is the phase angle, called the loss angle, by which the strain lags the 
stress. 

The linear theory contains an arbitrary scaling factor. To compare the response of 
different compliant walls, the wall eigenfunctions are normalized so that t3Iz0 = 1 .  
This normalization is, however, not particularly useful for the flow eigenfunctions 
because 7?/312, must be zero for a rigid wall. To allow comparisons with rigid-wall cases, 
flow eigenfunctions are normalized in such a way that the mean kinetic energy 
density of the disturbance, defined as (ui),.(uJr, is unity a t  x3 = 6 (the outer 
integration limit). Furthermore, the phase of (d/dx,)d, at x3 = z,,, the flow-wall 
interface, is fixed a t  -an. 

The total or integrated spatial growth of disturbances having fixed values of the 
non-dimensional frequency F = ojR, is investigated to assess the potential of certain 
compliant walls to influence transition. The exponential growth factors between two 
streamwise locations denoted so and s are calculated according to 

(2.38) 

where (A(  is a suitably defined disturbance amplitude of the flow.? so is usually chosen 
to correspond to points on the lower branch of the neutral curve. 

3. Comparison with some published results 
3.1. Blasius flow over a rigid flat plate 

Before a systematic study of viscoelastic wall layers was begun, a detailed study was 
made of the stability of Blasius flow over a rigid flat plate. The marginal stability 
curve and the spatial amplification rate contours (ai = -0.005 and ai = -0.01) were 
computed and these are compared against the published results of Jordinson (1970) 
in figure 3. The agreement with the marginal stability data of Jordinson's table 1 is 
generally to 3 or 4 significant digits. The agreement with Jordinson's spatial 
amplification data does not seem to be as good, mainly because the data had to  be 
scaled from his figure 3. Calculations of total spatial amplification (at fixed values 
of the non-dimensional frequency F = w/R,) as well as disturbance eigenfunctions 
and Reynolds stresses also show very good agreement with those of Jordinson. 
Furthermore, a t  the streamwise Reynolds numbers R, of 2.84 x lo6 (R, M 2900) and 
4.9 x lo6 (R, x 3809), which are the experimentally observed transition Reynolds 
numbers of Schubauer & Skramstad (1948) and Wells (1967) respectively, the 
maximum amplification factors are approximately e8.28 and respectively. These 
values are almost identical to those quoted by Jaffe, Okamura & Smith (1970), which 
are e8.3 and respectively at the two transition locations. Jaffe et al. employed a 

t Non-parallel flow contributions to the local spatial growth rate IAl-'(dlAl/dz,) may, to a 
first approximation, be estimated from the flow eigenfunctions (see Gaster 1974). These wery 
neglected above because they are asymptotically small at large R,; being of the order of l/(R,)f 
when compared with the parallel-flow growth rate of a,. Their contributions to the integrated or 
total spatial growth may, however, be of some significance; a point suggested by Professor M. 
Gaster to the author. It is hoped that this can be looked into in the near future. 
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FIGURE 3. Curves of constant ai for Blasius boundary-layer flow over a rigid wall. -, present 
results ; 0, Jordinson (1970). 

Gram-Schmidt orthogonalization technique to overcome the numerical difficulties 
associated with the stiff nature of the Orr-Sommerfeld equation. 

As a particularly severe test of the numerical method adopted and the codes, 
a single eigenvalue calculation was performed a t  a large Reynolds number 
R, = 1.72078 x lo6 and a = 0.30802099. The temporal eigenvalue c obtained has 
the value 0.321663-0.0362873, in almost complete agreement with the value of 
0.321 66- 0.036293 quoted in Davey (1981). The eigenfunctions a t  this eigenstate 
were also calculated and they display excellent agreement with figure 1 of Davey, 
which shows the wave-packet nature of the disturbance. Davey also mentioned a 
critical Reynolds number of R, = 519.06 a t  a = 0.303 77. The value of R, = 519.062 
was obtained by the present author a t  the same value of a. 

3.2. The rubber-layer walls of Kaplan and Landahl 

Stability calculations were also performed on two of Kaplan’s incompressible rubber- 
layer walls of uniform thickness and the results are compared in figure 4. Kaplan’s 
compliant layers were not firmly bonded onto the rigid base, but were allowed to  
slide freely at the interface subject to  zero vertical displacement instead. The 
boundary conditions a t  the interface with the rigid base are thus those of zero 
vertical displacement and zero shear stress perturbation, and were intended to 
simulate the dolphin’s coating which was supposed to be loosely anchored onto a 
firmer muscular base. These boundary conditions present no difficulty to the 
theoretical formulation developed in $ 2 .  I n  this case, the matrix 0, in (2.29) is 
formed from the second and third rows of the product matrix in (2.28). The displayed 
data points in figure 4 were scaled from figure 10 of Landahl & Kaplan (1965). There 
is reasonably good agreement except near the noses of the unstable domains where 
the present results show slightly lower critical Reynolds numbers Rgr. These 
discrepancies are not unexpected for on top of the various detailed computational 
differences, Kaplan’s model had omitted to couple the tangential shear stress 
perturbation a t  the flow-wall interface. Perturbation shear stress coupling is 
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FIGURE 4. Marginal stability curves of free-sliding incompressible viscoelastic layers with p = 1.2, 
6, = 0.8 and d = 0.0125. -, present results; 0, 0, Landahl & Kaplan (1965). 

incorporated in the present theoretical scheme. Indeed, according to Landahl & 
Kaplan, asymptotic analysis showed that the inclusion of shear stress coupling 
should have a mildly destabilizing effect, and this seems to be consistent with the 
differences noted. While its omission is fully justified a t  large Reynolds numbers, 
shear stress perturbation could be important a t  low Reynolds numbers. 

4. Single-layer viscoelastic walls 
This section is devoted to the consideration of Blasius boundary-layer flow over 

single-layer viscoelastic walls. The bonding between the layer and the rigid base is 
assumed to be perfect so that & l z ,  and f 3 I z , ,  the displacement amplitudes a t  the 
interface with the rigid base, are both zero. This is more realistic for a practical 
device than the sliding interface condition used by Landahl & Kaplan (1965). The 
single-layer study also furnishes a useful starting point for multi-layer cases where 
many more parameters of the wall must be specified. To accord with the non- 
dimensionalization scheme described in $2.4, all the wall parameters (dimensions and 
properties) are given in terms of the wall's set of reference scales. The wall Reynolds 
number R, is set a t  2 x lo4 in all cases. Unless otherwise indicated, the non- 
dimensional densities of the materials that made up the compliant walls are all 
assumed to be 1.0. 

4.1. The instabilities and their dominant nature 
Figure 5 displays the spatial stability characteristics for a single-layer wall which 
has a layer thickness of h = 1.0, C ,  = 0.7 and a relatively low material damping 
coeficient of d = 0.0049 (note that these are specified in wall reference scales). The 
material is nearly incompressible because of the relatively high value of the Bulk 
modulus (K = 500). 

Three distinct regions of instability can immediately be discerned. The unstable 
states in regime A are the direct derivatives of the Tollmien-Schlichting instability 
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0.4 

I L ?  

(TSI) that arises in similar flow over a rigid wall. These instabilities are Class A in 
Benjamin's classification. The instabilities in regimes B, and B, have arisen as a 
consequence of the compliant quality of the wall and are hence a type of CIPI. AS 
will be seen. these latter modes are resisted by wall damping and are hence Class B 
in Benjamin's scheme. The alphabet in the names of the regimes have been 
specifically chosen to  reflect the 'energy' character of the instability under 
Benjamin's classification. The numeral subscripts are introduced to distinguish the 
different instability regimes in the same 'energy ' class ; thus allowing for more 
precise referencing of the instabilities. 

The stabilizing influence of wall compliance on the TSI is well known and may be 
seen by comparing figures 3 (rigid-wall case) and 5. In  addition to having a 
significantly higher critical Reynolds number R,C' ( N 935), a t  any given R,, the 
unstable A regime has reduced maximum spatial growth rates (ai) and a narrower 
band of unstable frequencies ( w ) .  This gain in stability is, however, largely negated 
by the existence of the compliance-induced unstable regimes B, and B,. The unstable 
regime B, is by far the most extensive. It has a lower Rir ( N 758) than the A regime 
and its maximum local spatial growth rates are more than twice those of the unstable 
A regime a t  the same R,, over the range of R, shown. Figure 6 gives the maximum 
amplification envelope for the unstable A regime and the total amplification curves 
at two values of F for the unstable B, modes. Thus for this wall, wall compliance 
potentially leads to early transition via the CIFI modes. 

The unstable B, regime stretches to small R, and a critical Reynolds number RY 
in the usual sense cannot be ascribed. In  the low R, range, the locally-parallel flow 
assumption cannot be regarded as valid. The existence of the B, regime, more 
generally, however, does not appear to be in doubt even if non-parallel effects are 
considered because, for certain compliant walls, this regime can stretch to R, as large 
as 2000. The spatial growth rates are, however, very low and from the viewpoint of 

FIGURE 5. The stability diagram for a layer with h = 1.0, C, = 0.7, d = 0.0049 and K = 500. 
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integrated downstream growth, the B, regime does not appear to pose a serious 
threat to the longer-term (downstream) stability of the flow. 

Other than the differences in their response to wall damping, which have been used 
to categorize the instabilities into Class A and Class B, the three unstable regimes 
possess other distinctive features that are worth noting. I n  general, the neutral and 
unstable B, and B, eigenstates have higher real phase velocity c, than similar A 
eigenstates. While c, is almost always less than 0.5 for neutral and unstable Class A 
TSI waves, it can assume values close to 1.0 for unstable B, and B, waves. From 
figure 5 it is seen that the unstable B, modes tend to possess larger values of real 
wavenumber a, than the unstable A modes a t  corresponding R,. The unstable B, 
waves have low a, and are hence a form of long-wave disturbance. This indicates that 
the instability may be related to the long-wave instability found in air flow over 
liquid layers (Craik 1966); which has its origin in the fluctuating interface shear 
stresses. Study of the B, neutral eigenstates, in particular those on the lower branch 
of the B, loop, shows that a t  the lower R, end of the loop, the perturbation shear 
stress $31 a t  the flow-wall interface may be of the same order of magnitude as the 
vertical stress $33. While non-parallel flow influence is certain to become important 
a t  low R,, its effect is probably one of mild destabilization similar to the effect it has 
on rigid-wall TSI modes. The distribution of a, contours in figure 5 indicates that the 
real group velocity (6w/6a), is positive a t  all the unstable eigenstates. 

The compliant wall that has just been discussed cannot be said to be a typical 
single-layer wall because both significant and complex changes in the stability 
characteristics take place when the wall parameters are altered. It is, nevertheless, 
a useful reference case and a starting point for further detailed investigation into the 
effects the various wall parameters have on the stability of the coupled system. 

- 

- 
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FIGURE 7. Effects of layer thickness h on the marginal stability curves for a layer with C, = 1.0, 
d = 0.0049 and K = 500. 0, h = 0.4; 0, h = 1.0; A. h = 2.0; x ,  h = 5.0. 
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FIGURE 8. The marginal stability curves for a single-layer wall with h = 1.0, C, = 0.5, 
d = 0.0049 and K = 500. 

4.2. The effects of material stiffness and thickness of the layer on stability 
(single-layer) 

The material stiffness of the wall is determined by C,, where C, is the shear velocity 
the material would have if there were no damping (see $2.2). The effects of changing 
the C ,  on the stability characteristics of the wall discussed in the immediately 
preceding section can be seen from figures 7 and 8. It is observed that an increase in 
C, strongly inhibits the B, and B, instabilities, whose existence is a consequence of 
wall compliance. For C, = 1.0 (h  = 1.0) shown in figure 7, there are no significant 
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unstable B, and B, modes. There is a very small remnant of the unstable B, regime 
which continues to persist a t  very low Reynolds numbers, typically less than 100. 
These modes are not illustrated in figure 7 because in this range of R,, there are strong 
non-parallel flow effects and the true existence of these modes is questionable. At 
C, = 1.0 (h  = 1.0), the critical Reynolds number Rir is reduced to  about 642 and 
there is a significant increase in the w-bandwidth of the unstable A regime over that 
for C, = 0.7. Increase in the unstable w-bandwidth generally indicates an increase in 
the local amplification rates. Increase in G,, other things being equal, is therefore 
stabilizing for the B, and B, CIFI modes but destabilizing for the A or the TSI 
modes. Reduction in the C, has just the opposite effect on the stability. Figure 8 
shows the marginal stability curves for a wall with C, = 0.5, h = 1.0 and d = 0.0049. 
The Ri' for the unstable A regime is now increased to approximately 1208, which is 
more than twice the rigid-wall value. There is also a large contraction of the unstable 
A regime. This is, however, accompanied by a very significant change in the topology 
as well as a very strong intensification of the unstable Class B CIFI modes. As C, is 
reduced from 0.7 to 0.5, it appears that the B, and B, regimes coalesce and then 
develop into two large regimes of instability, one overlaying the other. 

The larger of the two unstable regimes, which is hashed on the unstable side of the 
marginal curves, stretches to frequency w less than 0.001, and possibly even lower to 
zero frequency. The existence of similar zerolnear-zero frequency modes may also be 
seen in figure 14 of Carpenter & Garrad (1985) for boundary-layer flow over 
compliant walls which are modelled as a plate on an elastic foundation and in figures 
6 and 7 of Gyorgyfalvy (1967) for similar flow over spring-backed membranes with 
viscous damping. Gyorgyfalvy referred to them as divergence- type Class C instability 
and in both of his figures these instabilities set in when the stiffness of the wall (the 
membrane's free wave speed and the foundation stiffness parameter) is sufficiently 
low. As we shall see further on, these unstable modes seem to be of Class B character 
and are hence referred to here as B, modes. A possible connection between the 
occurrence of the near-zero frequency instability and the violation of the static 
criterion for inviscid flow over passive compliant walls (Ye0 & Dowling 1987) was 
suggested by Yeo (1986). 

The smaller regime is bounded above by what appears to be branch-cut behaviour 
in the a-plane. As w is increased at a given R, from the lower marginal curve b-b, a 
stage is soon reached at  which 01, begins to tend to zero. When this happens, the real 
phase velocity c, rises rapidly to values much larger than 1.0. These unstable modes 
appear to have a Class A character with respect to increase in damping, and shall be 
referred to herein as A, modes to distinguish them from the unstable Class A modes 
of Tollmien-Schlichting origin. 

The maximum local spatial growth rates ai in the unstable B, and A, regimes of 
figure 8 are found to be very much larger than those of the A regime a t  the same 
R,; as much as 10 times as high and they thus represent very strong instabilities. 
Some constant ai contours for the unstable A, regime are shown. We shall have more 
to  say concerning these highly unstable modes later on. It suffices to note that a t  low 
C,, such as 0.5, there are potentially strong instability regimes that stretch to very 
low frequencies and low Reynolds numbers R,. 

Increasing the wall thickness evidently destabilizes all the CIFI regimes. At 
C, = 0.7, there are no longer separate B, and B, regimes for the thickness h = 5.0. 
Figure 10(a) illustrates what has occurred. When h = 0.4 (thin layer) no significant 
Class B instabilities occur in the R,, w range shown. An increase in the thickness h to 
1 .0 results in a very rapid onset of Class B instabilities. A further increase causes the 

13 FLN 196 
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FIGURE 9. Spatial amplification rates at Reynolds number of 4000 for a layer with C, = 0.7 and 
K = 500. -, d = 0.0049 ; -----, d = 0.0588 ; - - - - - -, rigid wall. 

unstable B, and B, regimes to coalesce or merge into a single large unstable Class B 
regime and a shift of the lower neutral boundary to  lower w. For h = 5.0, calculationq 
indicate that the group velocities of the unstable Class B spatial eigenstates along 
R, = 2000 and R, = 4000 have positive real parts and relatively small imaginary 
parts. The real group velocities are less than 1.0. 

From the results presented so far, i t  may be seen that an increase in wall 
compliance, which may either be derived from a reduction in C, or an increase in the 
wall thickness h, leads to  instabilities shifting to  lower frequencies. It is interesting 
to note that the lower neutral boundaries of the merged B, and B, regimes and the 
A, regime are almost straight lines joining the origin in the (R,, w)-plane suggesting 
that these instabilities only set in above certain dimensional frequencies ; depending 
weakly only on the Reynolds numbers Ra. The global aspect of these instabilities is 
in marked contrast with that of the unstable A or TSI regime which a t  any 
dimensional frequency has a fairly limited range of unstable Ra. 

The effects of the layer thickness h on the unstable A regime of a layer with C, = 0.7 
and d = 0.0049 are depicted in figure 10(b) .  It is observed that the wall thickness h 
only has a limited influence on the critical Reynolds number RY, being significant 
only when the layer is relatively thin. Beyond h = 2.0, the effect of h on the R,C' is 
minute. The maximum R,C' that can be obtained for this material by increasing h is 
only about 1036, about twice the rigid-wall value. The effect of h on the w-bandwidth 
of the A regimes is, however, more significant. There is still a very evident reduction 
in the w-bandwidth of the regime at R, = 4000 for h varying between 3.0 and 5.0 
although the critical Reynolds number RF is practically identical. The local 
amplification rates of the unstable Class A waves a t  R, = 4000 for the various wall 
thicknesses h = 1.0, 3.0 and 5.0, and for the rigid wall are given in figure 9. It can 
be seen that a very significant reduction in the growth rates accompanies the 
reduction in the w-bandwidth of the A regimes. At h = 5.0, the maximum local 
spatial growth rate is less than 40 % that  of the rigid-wall maximum. It can hence be 
seen that while the increase in h may have the beneficial effect of reducing the local 
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FIGURE 10. Effects of layer thickness h on the marginal stability curves for a layer with C, = 0.7, 
d = 0.0049 and K = 500. (a) CIFI, ( b )  TSI. 0, h = 0.4; 0 ,  h = 1.0; A, h = 3.0; x , h = 5.0. 

amplification rates a t  larger R, up to fairly large values of h, its influence on the 
critical Reynolds number R$ is only limited to  the lower values of h. Similar 
behaviour is to be seen in figure 7 for the material with C, = 1.0. In  this instance, the 
maximum R,"' of about 642 is for all practical purposes achieved for a value of h 
between 1.0 and 2.0. 

This behaviour may be qualitatively explained by appealing to equation (2.11 6) 
where we note that the decay rate of a shear wave disturbance into the compliant 
wall is determined by the exponent 6, (which is normally smaller than bL). 
Restricting ourselves to the neutral states, b, normally increases with a, (the 
wavenumber in the reference scale L!$) and C,. Although b, has dependence on the 

13-2 
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FIGURE 11. Wall eigenfunctions for the compliant wall of figure 10 with h = 5.  (a )  Eigenstate A. 
( b )  Eigenstate B. (c) Eigenstate E. -, real part;  - - - - - - ,  imaginary part. 

phase velocity c, the disturbance amplitude generally decays rapidly with the depth 
into the wall when a, is large or when C, is large ; the exception being when c > C, 
in which case there is sinusoidal propagation into the wall with small decay. 
Therefore, disturbance waves of large wavenumber (short wavelength) tend to exist 
near the surface of the wall in a kind of skin-effect, and hard walls (with high C,) 
strongly resist disturbance penetration. For the wall with h = 5.0, C, = 0.7 and 
d = 0.0049 (see figure lo), the analysis of the eigenstate a t  the nose of the A regime 
marked point A (a, w 3.25) in figure l O ( b )  shows that (bT)r w 2.678, which gives an 
amplitude reduction factor of lop3 in a distance of 2.579 into the wall; about mid- 
way through the wall. In the same distance, the eigenstate on the upper branch of 
the neutral curve at R, = 4000, marked B (a, w 0.792), which has (bT)r w 0.697, 
registers an amplitude reduction factor of 0.1655. This clearly explains why increase 
in the wall thickness has little effect on the critical Reynolds number R,C‘ when h is 
say greater than 2.0 because the disturbance has difficulty probing the depth of the 
layer and is thus indifferent to the additional depth. On the other hand, a t  eigenstate 
B, the disturbance can penetrate right through to the rigid-wall base and thus is able 
to reap the benefit of increase in wall thickness. 

A situation similar to eigenstate A occurs along the neutral curve CDEF in figure 
10 ( a )  which therefore also explains its indifference at  the larger values of h. The wall 
wavenumber a, along CDEF ranges from about 4.0 to 12.4. At the eigenstate 
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marked E, a, z 11.70 and (b,)r z 4.985 giving thus an amplitude reduction factor 
of lop3 in a distance of just 1.386 or 27.7% of the layer's thickness. 

These analyses are confirmed by the displacement eigenfunctions for the neutral 
eigenstates A, B and E given in figure 1 1 .  At the eigenstate A, the horizontal and 
vertical displacements of the disturbance are in the main confined to a depth of 2.0 
from the surface. At the eigenstate E, the skin-effect is even stronger and most of the 
perturbation is restricted to a depth of less than 1.0. For eigenstate B, the 
disturbance permeates the entire layer. 

When c > C,, b, has a small real part and a relatively larger imaginary part 
indicating that there is sinusoidal propagation into the wall with small decay. This 
typically happens on the lower neutral boundaries of the unstable Class B regimes 
shown in figure lO(a). I n  such cases, we can expect the effect of thickness h to be very 
pronounced and this is quite evident in figure lO(a). 

If the primary objective is to  eliminate the CTFI, in particular the unstable B, 
regime, i t  is noted (figure 7)  that the use of lightly damped material with C, = 1 
should be adequate. In  the limit of vanishingly small damping, however, the proper 
criterion appears to be cE > 1 (Ye0 1986) ; where cR is the Rayleigh surface-wave 
speed, which is the lowest surface-wave speed that a single-layer wall can support. 
For an incompressible material this is equivalent to C, > 1.0468. 

4.3. The effects of material damping (single-layer) 
The effects of material damping on Class A and Class B waves are well known. In  fact, 
the response of the unstable waves to damping provides a convenient basis for 
classifying the unstable waves. 

Figure 12 shows the effects of increasing the material damping coefficient d on the 
unstable Class A and Class B waves for a layer with thickness h = 1.0 and C, = 0.7. 
Damping can be seen to have a beneficial effect on the B, regime, which can be 
completely suppressed even a t  relatively low levels of material damping. For all the 
levels of material damping shown, the maximum loss angles on the B, neutral 
boundaries are all less than 5'. Damping also has a strong suppressive influence on 
the unstable B, waves. There are no unstable B, modes at  d = 0.0147 in the R,,w 
range shown and the tiny remnant of the B, regime may be ignored. Material 
damping has an adverse effect on the Class A TSI regime. But for the level of 
damping required to eliminate the unstable Class B waves, the effect on the A regime 
is not dramatic (see figure 12b). While there is a noticeable reduction of about 200 
in the critical Reynolds number Rjr for the unstable Class A regime when the 
damping is trebled from d = 0.0049 to  0.0147, the w-bandwidth of the regime in the 
higher R, range is hardly affected. As a result the local growth rates a t  the higher 
Reynolds numbers suffer only very small increases. The streamwise Reynolds 
number a t  which the maximum amplification factor reaches e8.3 is about 4.438 x 10' 
(R, z 3625), only slightly lower than the value of about 4.475 x lo6 for the Class A 
maximum amplification envelope (d = 0.0049) shown in figure 6. This dispro- 
portionate influence of wall damping on the Class A TSI and the Class B CIFI was 
also noted by Carpenter & Garrad (1985) in their investigation of spring-backed 
plates. With the effective suppression of the Class B CIFI through wall damping, 
there is an increase in the transition Reynolds number RF of about 56% over the 
rigid-wall value. 

The effect of material damping for a much thicker wall h = 5.0 and C, = 0.7 is 
shown in figure 13. A higher level of material damping is now required to suppress 
the unstable B, regime. For d = 0.0245, a small remain of the B, regime is still 
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present below R, = 4000, having a R,"' of about 3920. A small increase in d is, 
however, sufficient to remove the regime beyond R, = 4000. The unstable A regimes 
a t  the two levels of damping d = 0.0294 and d = 0.0588 are shown. In  both cases, the 
unstable B, regimes, if they exist, should be present only a t  R, significantly higher 
than 4000. For a damping coefficient d = 0.0294, the R,C' for the Class A TSI regime 
is down to around 232, lower than the rigid-wall value of 519.06. Further 
enhancement of damping from d = 0.0294 to 0.0588 produces a significant 
broadening of the unstable zone at the lower-Reynolds-number end where the 
dimensional frequencies are higher. But this has little effect on the critical Reynolds 

FIGURE 12. The effects of material damping on the marginal stability curves for a layer with 
C, = 0.7,  h = 1 and K = 500. (a )  CIFI. -, d = 0.0049; -----, d = 0.0098; - - - - - - ,  d = 0.011. 
( b )  TSI. -, d = 0.0049; -----, d = 0.0147. 
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FIGURE 13. The effects of material damping on the marginal stability curves for a layer with 
h = 5, C, = 0.7 and K = 500. -, d = 0.0588; -----, d = 0.0294; - - - - - - ,  d = 0.0245. 

number; in fact causing it to rise very slightly. Again, the destabilizing influence of 
material damping is small a t  higher Reynolds numbers. At R, = 4000, the increase 
in the w-bandwidth of the A regime is comparatively small for the large increase in 
the damping coefficient d ;  compare figure 10(b) for d = 0.0049 and figure 13. The 
local amplification rates a t  R, = 4000 for the case of d = 0.0588 is shown in figure 9 
where i t  may be compared against a similar wall with d = 0.0049 and the rigid-wall 
values. The increase of more than ten-fold in the damping coefficient d has produced 
a noticeable, but relatively small increase in the local amplification rates and the 
maximum amplification rate is only about 40% that of the rigid wall and 50% 
that of the thinner wall with h = 1 .O. A maximum amplification of e8.3 is obtained a t  
R, x 5800. The corresponding streamwise Reynolds number R, is about 11.36 x lo6, 
representing an increase of around 300 % over the rigid wall's streamwise transition 
Reynolds number Rt,' of 2.84 x lo6. Transition Reynolds numbers Rt,' or R& of similar 
order to the present one have been obtained by Carpenter & Garrad (1985) for their 
model of the Kramer-type walls based on a transition amplification factor of e9.5. 
However, it is not c1ea.r if the Class B CIFI are likely to be important in some of their 
cases that showed best promise. Similar and higher transition Reynolds numbers 
were obtained by Gyorgyfalvy (1967) in his parametric study of the theoretical 
transition delaying capabilities of spring-backed membranes. 

The very mild destabilizing influence of the damping coefficient d on the unstable 
Class A TSI regime a t  high R, is believed to be largely a consequence of the very low 
frequency of its constituent modes. When w, (in the length of L f ) )  is small, the loss 
tangent (w ,d ) / (pCt ) ,  which is a measure of the ratio of the energy lost per cycle to 
the maximum stored energy, increases a t  a slow rate with respect to increase in d.  In 
fact, the local rate of energy dissipation in the wall is proportional to w: according 
to (2.36). 

Thus, for a material with C, = 0.7, damping has been found to be effective in 
suppressing the unstable Class B waves. While there may be significant reduction in 
the critical Reynolds numbers for the A regime at high damping levels, the increase 
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FIGURE 14. The effects of material damping on the marginal stability curves for a layer with 
h = 1, C, = 0.5 and K = 500. --, d = 0.0125; d = 0.0250. 

in the local amplification rates is generally small a t  the higher Reynolds numbers 
where the frequencies are low. Application of the e8.3 transition rule seems to indicate 
that substantial delay in transition could be attainable. This promising delay in 
transition depends on two crucial factors ; the choice of a sufficiently thick layer to 
give good Class A stability performance a t  higher R, and the suppression of the 
unstable Class B regimes through material damping. Since the Class A TSI regime 
becomes weaker a t  lower values of C, and exists at lower frequencies (which suggests 
that they may be less affected by increase in damping), it is natural to find out if 
damping could also be applied to obtain improved stability performance for walls 
with lower C,, such as 0.5. Unfortunately, this does not appear to be so and the effects 
of damping for walls with low C,  turn out to be rather complex. 

Figure 14 shows the effects of material damping for a layer with h = 1.0 and 
C, = 0.5. Damping can be seen to have a stabilizing influence on the unstable Class B, 
regimes causing the upper neutral boundaries to shift downwards and resulting in the 
contraction of the regimes and their local growth rates. The unstable B, regimes, 
however, continue to stretch to near-zero frequency and this is not a t  all surprising 
because a t  such low frequencies, an increase in the damping coefficient d has almost 
no effect on the instability. Figure 14 also shows the effects of damping on the 
unstable A, regimes ; the upper neutral boundaries cannot be accurately ascertained 
because of the branch-cut behaviour which was described in $4.2 and are thus only 
schematically indicated. An increase in damping is generally found to have a 
destabilizing influence on the unstable A, regimes, causing the lower neutral 
boundaries to extend downwards to lower frequencies. It is primarily because of this 
destabilizing response that it was decided earlier on to label the instability A,. The 
subscript B is appended to highlight the link it seems to have with Class B instability. 
For if we are to increase the value of C, a t  a given R, and hold the other wall 
parameters constant, the lower boundary, a-a for example, can be shown to be 
continuously connected to the lower neutral boundary of the unstable Class B, 
regimes a t  higher values of C,, say 0.7. 
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The A, regime is also a compliance-induced instability. Comparison of figures 8 
and 14 shows that the unstable A and A, regimes approach each other as the damping 
coefficient d is increased. The two regimes coalesce a t  a value of d between 0.0125 and 
0.0250. The extent of the coalescence grows with further increase in the level of 
damping. Broadly similar trends are also observed for the layer thickness of h = 5.0. 
For this wall thickness, the coalescence or merging of the A and the A, regimes sets 
in a t  a higher value of d ,  between 0.0294 and 0.0392. 

The occurrence of coalescing unstable modes had been reported by Carpenter, 
Gaster & Willis (1983) for boundary-layer flow over compliant walls modelled as 
spring-backed bending plate with viscous substrate. The coalescence between a TSI 
and a CIFI regimes was brought about by increase in substrate viscosity. Coalescence 
between TSI and CIFI, of a slightly different kind, was also observed by Gyorgyfalvy 
(1967) in his study of spring-backed membrane. In his case, the coalescence was 
brought about by reduction in the foundation stiffness. He named it a Class C 
divergence instability and attributed its occurrence to the coincidence or the near- 
coincidence of the wave velocity of the surface and maximum phase speed of the TSI 
waves. In  our case, it is noted that the lowest free-wave velocity cR (ignoring 
dissipation) of the walls with C, = 0.5 is approximately 0.478. This is within close 
range of the maximum TSI phase speed. 

The stability characteristics of flows over single-layer walls of low C,, such as 0.5, 
are exceedingly complex and the above results are necessarily incomplete. What is 
certain, however, is that such low C, walls suffer from strong instabilities, and 
increase in the material damping coefficient d is not an effective measure to improve 
the stability performance. An increase in the damping level leads to a coalescence 
between the Class A TSI and the A, (CIFI) regimes. These effectively put a limit on 
the softness of the materials that can be used for single-layer compliant walls if 
strong CIFI are to be avoided. 

4.4. Material compressibility (single-layer) 
The effects of material compressibility have seldom been examined. Available results 
are in the main devoted to nearly incompressible materials because solid rubber- 
based materials have generally been assumed to be the type of material suitable for 
the construction of compliant walls. With advances in material processing technology 
this may no longer be true. 

Material compressibility can be important if, for example, porous materials or 
materials containing a uniform distribution of voids are used. The porous materials 
or the voids could be saturated or partially filled in with a viscous fluid to provide 
a measure of control over the damping characteristics of the wall similar to the 
original Kramer walls. If the local variations of the properties and states occur on a 
lengthscale that is much shorter than the disturbance lengthscales, some form of 
average properties can be defined. This would allow a macroscopic treatment of the 
complex dynamics. For single-layer walls, it is necessary of course to assume that the 
flow-wall interface is smooth and impermeable to the external flow. 

When the compressional wave speed cL is significantly larger than C,, the 
compliant response of the layer is largely determined by the latter. The effect of 
reducing cL, other things being equal, is to make the wall more compliant. The effects 
on stability are, however, only significant when cL approaches the order of C,. Figure 
15 shows these effects for a wall with h = 3.0, C, = 0.8 and d = 0.0049. At K = 1.067 
(or cL 1.386), there is a large improvement in the unstable A regime both in terms 
of an increase in the critical R, and a sizeable all round decrease in the w-bandwidth. 
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FIQURE 15. The effects of material compressibility on the marginal stability curves for a layer 
with h = 3, C, = 0.8 and d = 0.0049. -, K = 1.067; -----, K = 500. 
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FIQURE 16. The effects of material damping on the marginal stability curves for a compressible 
layer with h = 3.0, C, = 0.8 and K = 1.067. -, d = 0.0245; -----, d = 0.02156; ------,  
d = 0.0147. 

As we have come to expect, there is a concomitant escalation of the unstable B, and 
B, regimes which merge to form a large Class B regime that extends over the full 
range of R, shown. Unless this Class B regime can be effectively suppressed, there is 
no gain in stability. Figure 16 shows the effects of material damping on the marginal 
stability curves of the highly compressible wall in figure 15. It is observed that 
increase in damping has a very strong stabilizing influence on the unstable Class B 
regimes ; inducing its bifurcation into the B, and the B, regimes and the progressive 
retreat of the unstable B, regime to higher Reynolds numbers R,. A four-fold increase 
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in damping from d = 0.0049 (figure 15) to d = 0.0245 is sufficient to remove the 
unstable B, regime to R, higher than 4000. The remaining B, regime may be 
ignored. 

Comparison of figures 15 and 16 reveals that damping has only a small detrimental 
effect on the unstable A regime. The increase in damping from d = 0.0049 to 0.0245 
produces a fairly noticeable reduction in the R;', but otherwise, not affecting the 
w-bandwidth or the local amplification rates in any significant manner. A maximum 
amplification factor of e8.3 is reached a t  R, x 5800 (RE x 11.36 x lo6). The transition 
R, achieved for this wall is about the same as that attained using a thicker layer 
(h  = 5.0) of a nearly incompressible material with lower C ,  = 0.7 (figure 13) ; damping 
being used in both cases to suppress the CIFI. The compressible case, despite its 
smaller thickness and higher C,, however, has greatly improved TS stability in the 
lower half of the R, range. 

Thus material compressibility can have the potentially beneficial influence of 
delaying transition. The role played by material damping in the effective suppression 
of the Class B CIFI is again very crucial. 

5. Multi-layer viscoelastic walls 
The studies of the preceding sections help to identify the kinds of walls that show 

potential for substantial transition delay as well as those which are likely to have 
disastrous effects on flow stability. The investigation is extended to multi-layer cases 
here. T o  keep the task manageable, only two main categories of multi-layer walls are 
examined below. 

The first category consists mainly of two-layer walls in which the first layer is a 
thin layer of a stiff material and the second layer is a thick layer of softer material. 
The attachment of a thin layer of stiff material onto a highly compliant layer is 
usually highly desirable in practice because it helps to protect the underlying soft 
layer from accidental damage. The second category has been chosen to be a class of 
four-layer walls which have relative layer thicknesses similar to the complex multi- 
layer walls designed by Kramer (1960). The material properties in the latter category 
are selected to give the walls good potential for delaying transition. For the case of 
two-layer walls, attention is focused mainly on how the parameters of the top layer 
affect the instabilities. For this purpose the elastic shear speed and the damping 
coefficient of the material for the second layer is fixed a t  Ciz) = 0.7 and = 0.0049 
respectively to facilitate comparison with the single-layer results of the preceding 
section. The superscript (j) denotes thej th  layer. A very short study is also made of 
the stability consequences of placing the stiffer thin layer in an alternative position 
embedded within the softer layer. 

As in the preceding section, the densities of the materials are all selected to be 1.0. 
All the wall properties are given in the reference scales of the walls for R, = 2 x lo4. 

5.1. The efleects of top-layer C/l) and h(l) (two-layer) 

Figure 17 shows the effects an increase in the material stiffness of the top layer has 
on the marginal stability curves of a two-layer wall having an overall thickness of 
h = 1.0. The thickness of the top layer is h(') = 0.05. An increase in C ,  anywhere in 
a compliant wall generally renders the wall less compliant, and qualitatively we can 
expect the TSI to be destabilized and the CIFI to be stabilized. These effects are 
clearly reflected in the figure. More significantly, however, it may be noted that the 
stabilizing influence of increase in C/l) on the unstable B, regimes is much stronger 
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than its destabilizing influence on the unstable A regimes. The stabilizing influence 
on the B, regimes is also comparatively mild. An increase in Ctl) from 1.0 to 6.0 
produces a reduction in the R,C' of the unstable A regime of less than 100. There is 
an increase in the w-bandwidth but this does not appear to be unduly serious. The 
same increase in Cil) results in a rapid retreat of the unstable B, regime yielding an 
increase in the R,Cr of around 1100. Much of this increase is attributed to the 
movement of the upper branch of the neutral boundary to higher R,. There is 
relatively less movement on the lower neutral boundary. A sizeable unstable B, 
regime remains a t  Cll) = 6.0, but this could be suppressed by further increase in C:'), 
with some attendant detrimental effect for the A regime. 

FIQURE 17. The effects of top-layer C, on the marginal stability curves of a two-layer wall. 
Layerl:h=0.05,d=O.O000,K = 1200.Layer2:h=0.95,d=0.0049,K=500,C,=0.7.(a)CIFI. 
(b )  TSI, ~, Cj1) = 1.0; ----- C(1) = 3.0. ._____ C(1) = 6, 

> t  , t  
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We next consider the effects of the top-layer Cl" for a much thicker two-layer wall ; 
h(l) = 0.25 and h(2) = 4.75. It is very evident from a comparison of figure 18 and the 
marginal curves for the single-layer wall with h = 5.0 in figure 10 that an increase in 
Cll) brings about relatively small improvement to the lower neutral boundary of the 
unstable B regime. The corresponding effect of an increase in C/l) on the upper 
neutral boundary (CDEF in figure 10a) is very much stronger. Increase of Ct') from 
0.7 (single-layer case) to 3.0 is sufficient to reduce the unstable B regime to  a narrow 
frequency wedge. Further increase in C;l) produces further narrowing of this wedge, 
resulting mainly from the downward movement of the upper neutral boundary, and 

1 ' " ' I ' " ' I " "  
1000 2000 3000 4000 

FIGURE 18. The effects of top-layer C, on the marginal stability curves of a two-layer wall. 
Layer 1:  h = 0.25, d = 0.0049, K = 1200. Layer 2 :  h =  4.75, d = 0.0049, K = 500, C, = 0.7. 
( a )  CTFI, ~, c11’ = 3.0; ~ ~ ~ - - ,  C(1) = 6;  _..___ C(1) = 8 ,  ( b )  TSI, ~ C(1) = 3 .  _ _ _ _ _  c(U = 9 .  

, I  , t  > t  

_ _ _ - - -  , C:” = 30 (K = 4050). 
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FIGURE 19. Wall eigenfunctions a t  the nose of the B, regime for two-layer walls having different 
top-layer C, in figure 17 (a ) .  (a )  Eigenstate A, Cj” = Cj2) = 0.7. (6) Eigenstate B, Cil’ = 3. (c) 
Eigenstate C, Cj” = 6. ~ , real part ; - - - - - -, imaginary part. 

a subsequent bifurcation into the unstable B, and B, regimes. The unstable B, 
retreats beyond R, = 4000 a t  Cg’) = 9.0. At Cll) = 8.0, the maximum R, for the B, 
regime is high a t  R, z 1775, but its amplification rates are still very low. For the 
unstable A regime, an increase in Cg1) from 0.7 to 3.0 quickly causes the RY to fall 
to a value near that  of the rigid wall. The increase in the o-bandwidth a t  large R, is 
much less significant. For Cp) between 3.0 and 9.0, a prominent broadening of the 
o-bandwidth of the unstable A regime occurs signifying an increase in the local 
amplification rates. At a high elastic shear speed C:l) = 30.0, the entire A regime is 
very close to that of the rigid wall. 

As in $4, it is found that a fairly coherent explanation of the changes in the 
stability characteristics of the walls may be obtained from the analysis of the wall 
eigenfunctions. Figure 19 shows the wall eigenfunctions for the neutral eigenstates 
near the ‘noses’ of the B, regimes for the thinner two-layer walls (overall h = 1.0, 
figure 17a). The displacement eigenfunctions of the top layer in figure 19b, c display 
distinctively plate-like behaviour ; with an anti-symmetrical type of oscillational 
mode. Distinct differences exist between these and the eigenfunctions for Cil) = 0.7 
given in figure 19(a). In  the latter case, the magnitude of the horizontal displacement 
7, at the surface (subject to the normalization 1q31 = 1) is significantly larger than the 
other two cases. This is greatly reduced a t  Cgl) = 3.0 and 6.0 to that  which results 
mainly from the oscillations of the ‘plate’. Horizontal stretching in the vicinity of 



Stability of boundary-layer flow over viscoelastic walls 393 

the surface is also strongly resisted by the stiff top layer (compare the amount of 
horizontal displacement a t  the position of the neutral axis of the 'plate' in the three 
cases). This resistance to stretching is to be expected from the greater stiffness of the 
top layer. 

Detailed study of the wall eigenfunctions shows that, in general, the top layer 
assumes a plate-like response when it is materially stiffer than the second layer. The 
larger the ratio of shear speeds Cil)/Ciz), the stronger the plate-like behaviour. For 
small displacement amplitude and small plate-layer thickness h(l) relative to the 
disturbance wavelength, the dynamic response of the top layer may be approximated 
by that of the bending plate. This assumption is implicit in the compliant wall model 
used by Carpenter et al. The bending-plate model which they had used would only 
be good if the material stiffness of the top layer is significantly higher than the 
stiffness of the elastic foundation ; otherwise, a elastic or viscoelastic layer model 
would be more appropriate. 

Given the plate-like response of the top layer when Ci1)/Ci2) is large, the influence 
of the top layer on the stability may to a large extent be deduced from the governing 
equation for a bending plate : 

where B = E(h(1))3/12(l  - v2) is the flexural rigidity of the 'plate ' ; E = 2p(')[Cl1)l2 
(1 + v) is the Young's modulus, v is the Poisson's ratio and ( T ~ ~  is the net vertical 
stress acting on the plate layer. The impedance of the 'plate' is then proportional 
to 

where C, = a, h(l)Ci1)/3~ is the free-bending wave speed of the plate layer. For the 
cases of interest considered herein, the impedance of the plate to the formation of a 
bending wave is largely dominated by 172; c being generally within the range 
0.25-1.0. For qualitative analysis, the bending impedance can be taken as a first 
approximation to be proportional to 

C,Z a3h(')j3. (5.3) 

According to (5.3), the rate of increase in the impedance of the plate layer with 
respect to an increase in C{l) is, for a given h(l), proportional to a: and therefore large 
when a, is large. Since the eigenstates along CDEF and at  point A in figure 10 (h  = 
5.0 case) have rather large a, as noted in $4.2, the effect of any increase in Cll) on the 
impedance will be large. On the other hand, the a, along the lower neutral boundary 
of the B regime in figure 10 ( a )  are low, and therefore the effect of changes in Cil) will 
be proportionately smaller. This qualitatively explains the different rates of response 
of the lower and the upper neutral boundaries of the unstable B regime to  increases 
in GI1) as observed in figure 18 (a) .  For the A regime (see figures 18b and lob ,  h = 5.0) 
a similar rationale may explain the relatively stronger effect of an increase in Cp) on 
the nose region and the milder effects at large R,, say at  4000, when Cll) is increased 
from 0.7 to 3.0. The increase in Cp) from 3.0 to 30.0 has little further effect in the nose 
region of the A regime because the neutral boundaries there are then already close 
to the rigid wall's neutral boundary. At R, = 4000, there is a gradual enhancement 
of the w-bandwidth as Cl') rises. 

For the thinner two-layer walls (overall h = 1 .0), the same explanation applies to 
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what is observed in figure 17(a)  since a, is larger on the upper neutral boundaries 
than on the lower ones for the B, regimes. The smaller reduction in the critical 
Reynolds number R,"' of the unstable A regime shown in figure 17(b)  as compared 
with the much greater reduction for the thicker two-layer wall (from C, = 0.7 in 
figure 1 0 b  to C, = 3.0 in figure 186) can be explained by taking into account the 
dependence of the impedance on h(l) .  Since h(l) for the thicker wall is 5 times the 
h(l)  for the thinner wall, the rate of increase in the impedance of the top layer with 
respect to Cil) is 125 times as high for the same a,. This explains the rapid reduction 
in the RGCr for the thicker wall when Ci') is varied from 0.7 to 3.0. For both the thinner 
and the thicker walls considered, the effects of C/l) variation on the B, regime (or the 
low-R, end of the merged B, and B, regime) is comparatively small because of the low 
values of a,. Here C, may also be of the order of the phase speed c .  

To obtain improvement in overall stability, it  is frequently necessary to adjust 
CI1) and h(l) in opposite directions such that there is minimal adverse influence on the 
A or TSI regime while gain in stability is achieved on the CIFI. For a top layer which 
behaves like a plate and for which Cg is more dominant than c2, it  seems natural to 
hold (Ci1))2(h(1))3 constant while varying Cil) and h(l) .  Other things being equal, this 
corresponds to bending plates having the same flexural rigidity; the free bending 
wave speed then varies as l / ( h ( l ) ) ; .  Figure 20 shows the effects on the stability of 
varying C;') and h(l)  such the (C/1) )2(h(1) )3  is kept constant. The second layer is much 
thicker and softer with h(,) = 4.5 and Ci2) = 0.7.  It can be seen in figure 20 ( b )  that the 
different combinations of CI1) and h(l)  have closely identical A regimes. The reduction 
in h( l ) ,  which is accompanied by increase in Cil), has a rather mild destabilizing 
influence on the A regime especially a t  the higher R, where the frequencies are low. 
In figure 20(a) ,  it is noted that the reduction in h(') has a stronger stabilizing 
influence on the CIFI regimes. From the viewpoint of stability these results suggest 
that subject to  (C/1))2(h(1))3 being constant, thin top layers with high C / l )  are 
preferable to thicker ones with lower Cil). The bulk modulus of the first layer Kc') was 
varied merely as a convenient means of keeping the Poisson's ratio constant and the 
variation does not affect the results in any significant way. 

5.2.  Other locations of the s t i .  layer (three-layer) 
Up to now, we have considered only cases in which the stiff layer is the top layer. 
While it fulfils the important practical function of protecting the softer sublayer, it 
would be interesting to find out if it  is necessarily in the best interest of stability to 
place the stiff layer at the top. We consider this problem for the case of a compliant 
wall of overall thickness h = 1.0. 

The marginal stability curves for three different positions of the stiff elastic layer 
of thickness h = 0.05 and C, = 3.0 are given in figure 21. The three locations are 

(i) stiff layer a t  the top, 
(ii) top surface of stiff layer a t  a distance s = 0.2 from the flow-wall interface, 

and 
(iii) top surface of stiff layer at a distance s = 0.5 from the flow-wall interface. 
The detailed properties are given in the figures. 

If the purpose is to maximize Class A stability, then clearly the thin stiff layer 
should be located at the top (s = 0). Placing the layer at s = 0.2 evidently has a 
strong destabilizing effect on the A regime near the nose; R,"' is reduced by 
approximately 400. The destabilizing effect, however, recedes rather quickly as 
we get to higher Reynolds numbers. This implies that for the low-frequency (small 
F = u/R, )  instability waves normally associated with transition the increase in 
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disturbance amplification would be small; the loss of Class A stability near the nose 
is not crucial to transition. Furthermore, placing the thin stiff layer a t  s = 0.2 
produces a very strong stabilizing influence on the B regime. The improvement in 
B, stability may, in many walls, more than compensate for the small loss in low- 
frequency Class A stability. For walls dominated by strong B-type instabilities, 
placing the stiff layer a t  a short distance below the surface may be a good alternative 
to increasing wall damping as a means by which to improve the stability 
characteristics of the wall from the viewpoint of delaying transition. 

FIGURE 20. Marginal stability curves for two-layer walls having different top-layer thicknesses but 
the same flexural rigidity according to bending plate theory. (a) CIFI ,  (b) TSI. Layer 1 : -, 

h = 0.1, C, = 33.01, d = 0, K = 2360.7. Layer 2: h = 4.5, C, = 0.700, d = 0.0049, K = 500. 
h = 0 . 4 ,  C, = 3.500, d = O ,  K = 1633.3. -----, h Z 0 . 2 ,  C, = 10.11, d = 0, K = 2008.7. -----, 
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5.3. A spec@ class of four-layer walls 
The theoretical formulation that had been developed allows multi-layer walls to be 
treated in a uniform fashion. Here, we examine the stability of a class of four-layer 
walls which bear certain geometric similarities with the original compliant walls of 
Kramer (1960) ; in that  the relative thicknesses of the layers are the same as that of 

l " " l = " ' I ' ' ~ '  
I000 2000 3000 4000 

FIGURE 21. The effects of the location of the stiff layer on the marginal stability curves for a 
three-layer wall of overall thickness 1.0. 
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the more complex Kramer walls. It is, of course, not possible in the present treatment 
to  simulate the periodic character of the Kramer walls and the complex dynamics 
associated with the sloshing of the viscous liquid substrate among the stubs. 
Carpenter and coworkers had attempted to model the Kramer walls as a bending 
plate on an elastic foundation with a viscous liquid substrate that acts independently 
of the foundation. The basis of their model is that for long wavelength disturbances 
the periodicity of the stubs can be ignored. This seems a fair assumption because the 
important unstable waves which are responsible for transition to turbulence tend to 
have wavelengths which are significantly longer than the characteristic dimensions 
of the boundary layer and the stub spacings. The present theoretical model requires 
only minor additions if it is felt desirable to  superpose a viscous liquid substrate 
which acts independently of the layer. It is merely necessary to sum the stress 
contributions from the viscous substrate and the layer and to ensure that the liquid 
substrate satisfies the kinematic boundary conditions a t  the interfaces with the 
adjacent layers. The essential theory governing the dynamics of the liquid substrate 
and the interface conditions can be found in Yeo (1986). This course is not pursued 
here and the intention is not to attempt to justify Kramer’s experimental findings 
because it is not certain to the author if the present model will do justice to Kramer’s 
case. Besides, the material properties of the original Kramer walls have always been 
a subject of some controversy. Instead the properties of the four-layer walls were 
chosen, drawing upon the experience accumulated from previous runs, to give 
compliant walls which show greatly reduced disturbance growth rates and hence the 
potential for substantially delaying the transition. 

The properties of the four-layer walls were selected such that the top layer consists 
of a fairly stiff material which has Cil) greater than or equal to the free-stream 
velocity. The second layer which is three times as thick as the first is of a softer 
material with Cr’ = 0.8. The material damping coefficients of these layers were set 
to a nominal value of d(’) = d(’) = 0.0049 (a fairly low level). This choice of damping 
is not crucial unless d( l )  and are fairly large. Quite often, the enhancement of 
damping helps to suppress the CIFI without serious adverse effect on the Class A TSI 
waves a t  large Reynolds numbers R,. The third layer, which corresponds to Kramer’s 
layer of stubs, was chosen to be very soft with Ci3) = 0.4 and the level of material 
damping can be varied to exercise control over the unstable CIFI, which are Class B. 
No special consideration was given to the choice of properties for the last layer which 
were set at C14) = 0.8 and = 0.0049. The layers were assumed to be nearly 
incompressible with the exception of the third for which a low bulk modulus was 
assigned to account for the significant compressibility effect which is likely to be 
present in Kramer’s walls. The detailed specifications of the walls will be given in the 
figures presented. 

The choice of material properties for the top layer has been guided by the principle, 
demonstrated in $4.2, that the short-wavelength and high-frequency disturbances, 
which are mostly associated with the CIFI, tend to persist near the surface of the 
wall. These CIFI are effectively suppressed with the choice of relatively stiff material. 
The reduction of the material stiffness with the depth is designed to provide a 
progressively lower resistance to penetration by the longer wavelength Tollmien- 
Schlichting disturbance modes, thus enabling these waves to ‘probe ’ the depth 
of the wall and hence to realize the full compliance of the wall to  achieve maximum 
stabilization. Undesirable CIFI waves of longer wavelength which get through, but 
which generally exist a t  frequencies higher than the unstable Class A TSI waves a t  
the same R,, are suppressed by the appropriate level of material damping in the third 
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FIGURE 22. The marginal stability curves for a multi-layer wall. 

Material data for: __ 

1 0.5 2.0 0.0049 500 
2 1.5 0.8 0.0049 500 
3 1 .o 0.4 0.0294 0.267 
4 0.5 0.8 0.0049 500 

Material data for: ----- 

As above except third-layer d = 0.01225. 

Layer no. h c, d K 

layer. The shorter-wavelength and higher-frequency TSI will be somewhat 
destabilized by the described configuration but these do not matter as much as the 
longer-wavelength TSI waves insofar as transition is concerned. 

Figure 22 shows the marginal stability curves for one of the four-layer walls. The 
effects of material damping in the third layer on the CIFI is depicted. For d(3) = 

0,01225, the unstable B, regime has a R,C' of around 3440 (corresponding A regime 
not shown for clarity). At = 0.0294, the unstable B, regime retreats way beyond 
R, = 4000. The unstable TSI regime which is shown has a critical Reynolds number 
Rgr of 542.85, very slightly larger than the rigid-wall value. The relatively low value 
of the critical Reynolds number R:" is largely a consequence of the stiff resistance 
encountered by the shorter wavelength TS disturbances in the top layer. Comparison 
with the rigid-wall marginal stability curve reveals the rapid reduction in the 
w-bandwidth with increasing R,. The local amplification rates a t  large R, are thus 
substantially less than those for the rigid wall. Further improvement of the A or TSI 
regime is achieved when the top-layer Cil) is reduced to 1 .O. The marginal curves are 
shown in figure 23 together with the marginal curve of the rigid wall. The reduction 
in Cil) produces a new R,C' of 643.89 together with further decrease in the 
w-bandwidth from the previous case (Ci') = 2.0) over much of the Reynolds-number 
range. The upper neutral boundaries for the two compliant cases converge as we get 
to higher R, beyond 4000. Comparison with the rigid-wall neutral boundary clearly 
illustrates the extent of the improvement for the TSI regimes. The local amplification 
rate contours for ui = -0.0015 and -0.003 are also shown. At R, = 4000, the 
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FIGURE 23. Curves of constant a, for a multi-layer wall 

Material data  for compliant wall : 

1 0.5 1 .o 0.0049 500 
2 1.5 0.8 0.0049 500 
3 1 .o 0.4 0.0294 0.267 
4 0.5 0.8 0.0049 500 

....__ ~ , compliant wall; -----, rigid wall. 
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FIGURE 24. The maximum amplification envelopes for two four-layer walls. ----, four-layer wall 
of figure 22; -, four-layer wall of figure 23; - - - - - - ,  total amplification curves at F = f x  
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FIGURE 25. Wall eigenfunctions for eigenstates of the four-layer walls of figure 22. 
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Thickness Young’s modulus 
Layer no. (mm) (N/mm2) 

1 0.5556 0.972 
2 1.6667 0.622 
3 1 .1111  0.156 
4 0.5556 0.622 

TABLE 1 

maximum local amplification rate is slightly less than 30% of the rigid-wall 
maximum. The total amplification envelopes for the two four-layer walls are given 
in figure 24. A maximum spatial amplification factor of e8.3 is achieved by the two 
walls a t  R, x 16.27 x lo6 (R, x 6940) for the case with Ci’) = 1.0 and R, w 16.17 x lo6 
(R, z 6920) for Cil) = 2.0. These results represent substantial delay in transition 
provided the e8.3 transition rule holds. It is important to be reminded that these 
results are for two-dimensional disturbances. Reduced streamwise transition 
distances are predicted when oblique wave modes are taken into account; Yeo 
( 1986). 

The eigenfunctions a t  three neutral eigenstates denoted A, B and C in figure 22 
are shown in figure 25. The displacement eigenfunctions in figure 25(b) for the 
eigenstate on the upper neutral branch of the TSI regime indicate plate-like response 
in the top layer. A good deal of the dissipation of disturbance energy within the wall 
occurs in the soft and highly compressible third layer. For the eigenstate at the nose 
of the A regime, denoted A in figure 22, the streamwise wavelength of the disturbance 
is approximately 0.58, only slightly larger than the thickness of the first layer 
(h(l) = 0.5). Because this wavelength is only of the order of the thickness of the top 
layer, the top layer no longer behaves like a plate, but instead, merely resists the 
penetration of the disturbance wave by its sheer stiffness (figure 25a). This results in 
a very sharp decline of the disturbance amplitude within the first layer. In figure 
25 (c), we have the eigenfunctions for the eigenstate a t  the nose of the B, regime for 

= 0.01225. There is a plate-like response from the top layer. Again it is observed 
that most of the dissipation of disturbance energy within the wall occurs in the third 
layer. Variation of the material damping coefficient d here has a strong influence on 
the CIFI. The third layer corresponds precisely to Kramer’s layer of stubs and 
viscous damping fluid. 

If we assume a free-stream velocity of 18 m/s, a density of lo3 kg/m3 and a 
kinematic viscosity of lop6 mz/s for the flow, the dimensions and properties of the 
four-layer wall given in figure 23 work out as in table 1. The overall thickness of the 
wall is 3.889 mm and the above Young’s moduli are elastic Young’s moduli based 
only on the elastic shear speed C,. It is remarkable that these thicknesses and 
Young’s moduli are of the same order as those quoted by Carpenter & Garrad (1985) 
for the best of the Kramer’s original walls. 

The two walls considered in this section exhibited potential transition distances in 
excess of 5.6 times the transition distance found on rigid walls. They are of similar 
order to, but less than, the maximum transition delay distances obtained by 
Gyorgyfalvy (1967) for similar flow over spring-backed membrane with viscous 
damping, and are higher than those implied in table 3 of Carpenter & Garrad (1985) 
for the best Kramer-type walls. Gyorgyfalvy’s results were based primarily on the 
growth of the TSI waves. However, it is not clear from his paper what criteria he had 
employed in discounting the Class B and Class C instabilities. 



402 K .  S. Yeo 

- 2 . 0 1 1 . 0  0.0 

4 

c 
-100 -50 0 50 100 0 0.2 0.4 0.6 

L TR 

FIGURE 26. Flow eigenfunctiorp on the upper neutral curve at R, = 4000 for the rigid wall. 
(a) (b )  $3, 6'27 (dl 7R- - , real part ; - - - - - -, imaginary part. 

6. Flow eigenfunction and stability 
In the preceding sections, the study of wall eigenfunctions provides valuable 

insight into some of the mechanics underlying the predicted stability behaviour. 
Some analyses of flow eigenfunctions were also made and the more salient points are 
noted below together with observations concerning their relation to flow stability. 

Figures 26 and 27 show the various flow eigenfunctions for the neutral eigenstates 
on the upper neutral boundary of the TSI regime a t  R, = 4000 for a rigid wall and 
the four-layer compliant wall of figure 23 respectively. These eigenfunctions have 
been normalized in such a manner that (uj), ( u ~ ) ~ ,  termed the mean perturbation 
kinetic energy density, is 1.0 a t  x3 = 6 (displacement thicknesses) and the argument 
of Arg (41,3) = -in at x3 = 0. The perturbation velocity components at the 
mean position of the wall a t  z3 = 0 are non-zero for the compliant wall. This is to be 
expected because of the interface boundary conditions they must satisfy. It will also 
be observed that the Reynolds stress (7R) distribution for the compliant wall 
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eigenstate is significantly lower than that for the rigid wall. This means that, subject 
to the normalization, the total rate of energy transfer from the basic flow to the 
disturbance is lower in the case of the compliant wall. Since the disturbance is 
neutrally stable, this is also equal to the rate at which the disturbance energy is being 
dissipated within the flow and the wall. The reduced total dissipation rate of the 
system and its improved stability over the rigid-wall case are consistent with 
the Class A nature of the Tollmien-Schlichting instability. The distributions of 
disturbance vorticity amplitude c2, where & = ul, - u3, are also shown for the two 
walls. The level of disturbance vorticity over the compliant wall is clearly much 
lower than that over the rigid wall, showing that compliant wall stabilization may 
also be associated yith greatly reduced levels of disturbance vorticity Q in the flow. 
The maximum of lc21 for the compliant wall eigenstate is about that  of the rigid-wall 
eigenstate ; the maximum moduli occur at x3 = 0 in both cases. The above typically 
holds for other eigenstates on the upper neutral branch of the TSI loop when 

0-1 1 -  
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stabilization is observed ; the stronger the stabilizing influence of the compliant wall 
the more pronounced are the noted effects. 

For  a compliant wall, the total flux of disturbance vorticity 5, across the mean 
interface per unit area and time is given by 

1 
R - - L, 3 + u3 u, 3' 

This may be deduced from the conservation form of the linearized disturbance 
vorticity equation. The first term represents a diffusive flux of 5,. This is generated 
in response to the propagating disturbance field in the near-wall region so as to 
maintain at all times the non-slip flow condition required by the presence of 
viscosity. The second term u3 U , 3  represents the convective transport of mean flow 
vorticity across x3 = 0 induced by the wave motion on the compliant boundary. The 
underIying mechanics of the transport may be said to  be inertial because i t  could 
theoretically exist even in the absence of viscosity provided U , 3  is not zero at 
x3 = 0. While the mechanics of the transport is determined by inertial factors, the 
existence of non-zero mean flow vorticity U ,  is in reality a consequence of the non- 
slip condition U3Iz, = 0 imposed by viscosity on the mean fiow. Thus u3 U ,  really 
represents a convective transport of viscosity-generated vorticity induced by inertial 
factors. In  the case of a rigid boundary, the convective flux is absent, and it is the 
outward diffusion of the viscosity-generated flux - c2, 3 /Rb  and its constructive 
interference with the oncoming disturbance vorticity in the near-wall region that 
constitute the physical basis of Tollmien-Schlichting instability over rigid surfaces ; 
see $ 3  of Lighthill (1963). For TS waves over compliant surfaces, however, the 
stability is determined by the total flux (6.1) rather than the diffusive flux alone. 

For the compliant wall eigenstate given in figure 27, the viscosity-generated flux 
-<,, 3/R6 is only about $ that  for the corresponding rigid wall eigenstate (figure 26). 
Hence, subject to the normalization, compliant wall response is seen to have reduced 
the rate a t  which disturbance vorticity is being produced a t  the wall via viscosity. 
This accords very well with the cancelling effect of compliant wall motion on the wall 
friction layer mentioned by Benjamin (1964). I n  addition, cFlculation shows that 
the amplitude modulus 14, U ,  3 1  is about 2.35 times that of 16,, 31/Rb a t  x3 = 0. The 
phase difference between the two fluxes is about 175" and hence indicates a 
substantial cancellation of the diffusive flux. Thus we see that the stabilization of the 
TS mode is also associated with a process in which the viscosity-generated vorticity 
of the mean flow is directed by the appropriate wall motion to produce a cancelling 
effect on the component of viscosity-generated diffusive flux. For this compliant wall 
eigenstate, the total outward flux of disturbance vorticity y2 is dominated by inertial 
contributions and the phase of 5, is determined largely by the wave motion of the 
surface. It is also noted that, in general, the dominance of the inertial flux increases 
with the degree of stabilization obtained. 

In  the case of CIFI ,  u3 U , 3  is generally found to be much more dominant than 
-<2,3/Rb over much of the flow domain. This is because the mechanics of C I F I  
is largely determined by inertial effects. Except a t  low Reynolds numbers, viscosity 
plays a comparatively minor role in CIFI .  
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7. Conclusions 
The linear stability of boundary-layer flow over single and multi-layer walls to 

two-dimensional disturbance modes was studied. The response of a multi-layer wall 
was given a simple representation using a displacement-stress vector formulation. 
The formulation permits a systematic numerical implementation of the eigenvalue 
problem which is applicable to walls having any finite number of layers. Furthermore, 
the treatment extends naturally to anisotropic-material walls as well as three- 
dimensional wave propagation in multi-layer walls, see Yeo (1986). The present 
model also takes into account the coupling of shear stress perturbation at the 
flow-wall interface which is omitted in almost all previous studies. 

The effects wall compliance and wall damping have on the various instability 
modes were found to be generally consistent with the results of earlier works. A Iong- 
wavelength instability (relative to local displacement thickness) which persists to 
very low Reynolds numbers was also found. This instability, termed B, in the present 
work, generally has small spatial growth rates and is believed not to be important as 
far as transition is concerned. It is a CIFI and may be related to the low-Reynolds- 
number instability modes noted in Landahl (1962). 

To have significant effect on stability, the material C, for a single-layer wall needs 
to be less than the free-stream velocity. When C, is near to 1.0, the CIFI are not 
important and may be suppressed with a small amount of material damping. 
However, the gain in the stability for the TSI regime is also modest. For a softer 
material with C, = 0.7,  the CIFI become important, but these may be effectively 
suppressed by increasing wall damping, resulting in a significant net gain in overall 
stability. Provided it is possible to suppress the CIFI by increasing the material 
damping, thicker wall layers are preferable to thinner ones because they sustain 
lower spatial amplification rates for the Class A TSI waves a t  the larger R,. This is 
because damping has a mild destabilizing influence on the lower frequency TSI waves 
which exist at larger R,. In  such cases, substantial delay of transition was found to 
be theoretically possible accordingly to a e8.3 transition rule because of greatly 
reduced local amplification rates. High levels of damping may, however, also lead to 
significant reduction in the critical Reynolds number R,C' of the A or TSI regimes. 
The stability eigenvalue spectra for single-layer walls with low C,, such as 0.5, was 
found to be highly complex. In  places, it was virtually impossible to  determine the 
spatial stability eigenstates because of what appears to be branch-cut behaviour 
associated with the continuous spectra in the a-plane. Our results for these are 
incomplete, but what appears to be fairly certain is that there are strong CIFI which 
cannot be effectively suppressed by material damping alone. Coalescence between 
unstable TSI and CIFI was also noted. Reduction in the Bulk modulus (or increase 
in material compressibility) stabilizes the TSI and destabilizes the CIFI. The effect is, 
however, significant only when cL reaches the order of C,. 

The study of wall eigenfunctions shows that the magnitude of (a,)' (real 
wavenumber in wall lengthscale) is a good indicator of the penetrative quality of a 
disturbance mode. Disturbance waves having high (a,), (short wavelength) tend to  
persist in a thin layer near the surface whereas waves with small (a,), permeate the 
entire layer. The frequency of a disturbance mode also determines its response to an 
increase in the wall damping coefficient d.  When the frequency w is low (high), the 
effect on the stability of the mode from an increase in d is correspondingly small 
(large). This may be related to the use of the Voigt model, in which the loss tangent 
(a measure of the 'quality' of damping) is proportional to 0,. 
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In  the case of two-layer walls, the thin top layers were found to assume a very 
distinctive plate-like behaviour when they are materially much stiffer than the 
second thick layer. In  such cases, some of the effects of the properties and the 
thickness of the top thin layer on flow stability may be qualitatively explained on the 
basis of the plate-like response. A thin top plate-like layer with greater resistance to 
bending tends to stabilize the CIFI and destabilize the TSI. For top plate-like layers 
having unit density and the same flexural rigidity, a thinner layer with higher C, was 
found to be preferable to  a thicker layer with lower C, because of its strong stabilizing 
influence on the CIFI and small destabilizing influence on the TSI. 

A thin stiff layer clearly has a very strong stabilizing influence on the CIFI when 
it  is placed at a short distance below the surface of the softer layer. Placing a thin 
layer in an embedded position tends to destabilize the A or TSI regime but such an 
effect appears to be small a t  the higher R,. Thus, careful positioning of a thin stiff 
layer in an embedded position near the surface appears to be a promising way to 
obtain an overall gain in stability. 

A specific class of four-layer walls bearing some geometric similarities with the 
original Kramer walls was studied. Based largely upon the understanding gained 
from the studies of single-layer and multi-layer walls, the material properties of the 
layers were selected to  give good stability performance from the point of view of 
effective suppression of the CIFI and low spatial amplification rates for the TSI. 
Results for two specific walls were presented which exhibit good transition delaying 
potential and these remarkably have material moduli which are of similar order to 
those quoted by Carpenter & Garrad (1985) for the best Kramer walls. The role of 
damping in the third and highly compliant layer, which corresponds to the layer of 
stubs in the Kramer walls, was crucial to the inhibition of the CIFI. This suggests 
that the viscous substrates in Kramer’s better walls might have served the same 
function. 

The disturbance vorticity flux from the boundary may be decomposed into a 
viscosity-induced diffusive flux and a convective flux. For stabilized TS waves 
reduction in the diffusive flux is noted. This accords with the friction-layer 
cancellation effect suggested by Benjamin (1964). Compliant wall motion also 
induces a convective transfer of mean flow vorticity across the mean flow-wall 
interface. The stabilization of the Tollmien-Schlichting wave mode is also observed 
to be associated with a process in which mean flow vorticity is directed by the wall 
motion to produce a cancellation effect on the diffusive flux of disturbance vorticity 
produced by viscosity a t  a solid surface. At the higher Reynolds numbers the 
stabilized TS modes are also observed to have 

( a )  a convection-dominated flux of disturbance vorticity 6, at x3 = 0 and, 
( b )  subject to the normalization used, greatly reduced levels of disturbance 

vorticity c, and Reynolds stresses in the flow. 
Except a t  low Reynolds numbers, the convectJive flux of c, dominates over the 
diffusive flux in the case of CIFI modes. 
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